Properties

Label 2-1183-7.4-c1-0-68
Degree $2$
Conductor $1183$
Sign $0.806 + 0.591i$
Analytic cond. $9.44630$
Root an. cond. $3.07348$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.536 + 0.929i)2-s + (1.21 − 2.10i)3-s + (0.424 − 0.734i)4-s + (−0.312 − 0.541i)5-s + 2.60·6-s + (1.21 + 2.34i)7-s + 3.05·8-s + (−1.45 − 2.52i)9-s + (0.335 − 0.581i)10-s + (0.354 − 0.613i)11-s + (−1.03 − 1.78i)12-s + (−1.53 + 2.39i)14-s − 1.52·15-s + (0.791 + 1.37i)16-s + (1.67 − 2.89i)17-s + (1.56 − 2.70i)18-s + ⋯
L(s)  = 1  + (0.379 + 0.657i)2-s + (0.701 − 1.21i)3-s + (0.212 − 0.367i)4-s + (−0.139 − 0.242i)5-s + 1.06·6-s + (0.459 + 0.888i)7-s + 1.08·8-s + (−0.485 − 0.840i)9-s + (0.106 − 0.183i)10-s + (0.106 − 0.185i)11-s + (−0.297 − 0.515i)12-s + (−0.409 + 0.638i)14-s − 0.392·15-s + (0.197 + 0.342i)16-s + (0.405 − 0.702i)17-s + (0.368 − 0.637i)18-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1183 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.806 + 0.591i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1183 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.806 + 0.591i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1183\)    =    \(7 \cdot 13^{2}\)
Sign: $0.806 + 0.591i$
Analytic conductor: \(9.44630\)
Root analytic conductor: \(3.07348\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1183} (508, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1183,\ (\ :1/2),\ 0.806 + 0.591i)\)

Particular Values

\(L(1)\) \(\approx\) \(3.052876212\)
\(L(\frac12)\) \(\approx\) \(3.052876212\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 + (-1.21 - 2.34i)T \)
13 \( 1 \)
good2 \( 1 + (-0.536 - 0.929i)T + (-1 + 1.73i)T^{2} \)
3 \( 1 + (-1.21 + 2.10i)T + (-1.5 - 2.59i)T^{2} \)
5 \( 1 + (0.312 + 0.541i)T + (-2.5 + 4.33i)T^{2} \)
11 \( 1 + (-0.354 + 0.613i)T + (-5.5 - 9.52i)T^{2} \)
17 \( 1 + (-1.67 + 2.89i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (-2.60 - 4.50i)T + (-9.5 + 16.4i)T^{2} \)
23 \( 1 + (-2.21 - 3.83i)T + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + 6.59T + 29T^{2} \)
31 \( 1 + (-2.19 + 3.80i)T + (-15.5 - 26.8i)T^{2} \)
37 \( 1 + (0.211 + 0.366i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + 5.01T + 41T^{2} \)
43 \( 1 + 11.2T + 43T^{2} \)
47 \( 1 + (4.03 + 6.99i)T + (-23.5 + 40.7i)T^{2} \)
53 \( 1 + (-0.348 + 0.603i)T + (-26.5 - 45.8i)T^{2} \)
59 \( 1 + (4.93 - 8.54i)T + (-29.5 - 51.0i)T^{2} \)
61 \( 1 + (2.34 + 4.06i)T + (-30.5 + 52.8i)T^{2} \)
67 \( 1 + (5.21 - 9.02i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 + 14.0T + 71T^{2} \)
73 \( 1 + (-2.54 + 4.40i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + (-1.95 - 3.38i)T + (-39.5 + 68.4i)T^{2} \)
83 \( 1 - 10.2T + 83T^{2} \)
89 \( 1 + (-6.68 - 11.5i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + 0.202T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.460214123252139363325527975719, −8.536299514233707915233828816543, −7.84449350752575135104053610939, −7.29811844622274043367611504411, −6.39071617718141218865611012965, −5.58881494833954002748314146295, −4.84897513798660545473785596581, −3.32496550679887361235267047172, −2.11426438558131649232679157354, −1.28820719151761349354493384758, 1.62299104869001517069880590976, 3.12058999256617855564641355760, 3.45340777434853192627206789551, 4.50799481216731648343207802594, 4.95494942270776330946290846433, 6.71455252133643329108407672428, 7.49214142571656919691996733731, 8.301877536347153608494167140909, 9.166212619369674189515569746576, 10.07336371593836320111793743570

Graph of the $Z$-function along the critical line