Properties

Label 12-1183e6-1.1-c1e6-0-0
Degree $12$
Conductor $2.741\times 10^{18}$
Sign $1$
Analytic cond. $710511.$
Root an. cond. $3.07348$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·3-s + 3·4-s + 6·9-s − 12·12-s + 16-s − 8·17-s − 20·23-s + 20·25-s − 4·27-s + 48·29-s + 18·36-s − 20·43-s − 4·48-s − 3·49-s + 32·51-s + 16·53-s − 12·61-s − 64-s − 24·68-s + 80·69-s − 80·75-s − 28·79-s − 7·81-s − 192·87-s − 60·92-s + 60·100-s − 64·101-s + ⋯
L(s)  = 1  − 2.30·3-s + 3/2·4-s + 2·9-s − 3.46·12-s + 1/4·16-s − 1.94·17-s − 4.17·23-s + 4·25-s − 0.769·27-s + 8.91·29-s + 3·36-s − 3.04·43-s − 0.577·48-s − 3/7·49-s + 4.48·51-s + 2.19·53-s − 1.53·61-s − 1/8·64-s − 2.91·68-s + 9.63·69-s − 9.23·75-s − 3.15·79-s − 7/9·81-s − 20.5·87-s − 6.25·92-s + 6·100-s − 6.36·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(7^{6} \cdot 13^{12}\right)^{s/2} \, \Gamma_{\C}(s)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(7^{6} \cdot 13^{12}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(12\)
Conductor: \(7^{6} \cdot 13^{12}\)
Sign: $1$
Analytic conductor: \(710511.\)
Root analytic conductor: \(3.07348\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((12,\ 7^{6} \cdot 13^{12} ,\ ( \ : [1/2]^{6} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(1.071492189\)
\(L(\frac12)\) \(\approx\) \(1.071492189\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( ( 1 + T^{2} )^{3} \)
13 \( 1 \)
good2 \( 1 - 3 T^{2} + p^{3} T^{4} - 5 p^{2} T^{6} + p^{5} T^{8} - 3 p^{4} T^{10} + p^{6} T^{12} \)
3 \( ( 1 + 2 T + p T^{2} + 4 T^{3} + p^{2} T^{4} + 2 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
5 \( 1 - 4 p T^{2} + 192 T^{4} - 1166 T^{6} + 192 p^{2} T^{8} - 4 p^{5} T^{10} + p^{6} T^{12} \)
11 \( 1 - 50 T^{2} + 1179 T^{4} - 16436 T^{6} + 1179 p^{2} T^{8} - 50 p^{4} T^{10} + p^{6} T^{12} \)
17 \( ( 1 + 4 T + 41 T^{2} + 140 T^{3} + 41 p T^{4} + 4 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
19 \( 1 - 100 T^{2} + 4384 T^{4} - 108094 T^{6} + 4384 p^{2} T^{8} - 100 p^{4} T^{10} + p^{6} T^{12} \)
23 \( ( 1 + 10 T + 70 T^{2} + 324 T^{3} + 70 p T^{4} + 10 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
29 \( ( 1 - 24 T + 272 T^{2} - 1846 T^{3} + 272 p T^{4} - 24 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
31 \( 1 - 132 T^{2} + 7952 T^{4} - 298646 T^{6} + 7952 p^{2} T^{8} - 132 p^{4} T^{10} + p^{6} T^{12} \)
37 \( 1 - 106 T^{2} + 6731 T^{4} - 293796 T^{6} + 6731 p^{2} T^{8} - 106 p^{4} T^{10} + p^{6} T^{12} \)
41 \( 1 - 186 T^{2} + 16127 T^{4} - 834860 T^{6} + 16127 p^{2} T^{8} - 186 p^{4} T^{10} + p^{6} T^{12} \)
43 \( ( 1 + 10 T + 58 T^{2} + 232 T^{3} + 58 p T^{4} + 10 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
47 \( 1 - 60 T^{2} + 6344 T^{4} - 242966 T^{6} + 6344 p^{2} T^{8} - 60 p^{4} T^{10} + p^{6} T^{12} \)
53 \( ( 1 - 8 T + 124 T^{2} - 870 T^{3} + 124 p T^{4} - 8 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
59 \( 1 - 26 T^{2} + 4647 T^{4} - 304748 T^{6} + 4647 p^{2} T^{8} - 26 p^{4} T^{10} + p^{6} T^{12} \)
61 \( ( 1 + 2 T + p T^{2} )^{6} \)
67 \( 1 - 10 T^{2} + 1079 T^{4} + 296244 T^{6} + 1079 p^{2} T^{8} - 10 p^{4} T^{10} + p^{6} T^{12} \)
71 \( 1 - 346 T^{2} + 53187 T^{4} - 4779748 T^{6} + 53187 p^{2} T^{8} - 346 p^{4} T^{10} + p^{6} T^{12} \)
73 \( 1 - 140 T^{2} + 8200 T^{4} - 408038 T^{6} + 8200 p^{2} T^{8} - 140 p^{4} T^{10} + p^{6} T^{12} \)
79 \( ( 1 + 14 T + 242 T^{2} + 2196 T^{3} + 242 p T^{4} + 14 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
83 \( 1 + 188 T^{2} + 27456 T^{4} + 2388290 T^{6} + 27456 p^{2} T^{8} + 188 p^{4} T^{10} + p^{6} T^{12} \)
89 \( 1 - 340 T^{2} + 60464 T^{4} - 6608166 T^{6} + 60464 p^{2} T^{8} - 340 p^{4} T^{10} + p^{6} T^{12} \)
97 \( 1 - 540 T^{2} + 125240 T^{4} - 15959702 T^{6} + 125240 p^{2} T^{8} - 540 p^{4} T^{10} + p^{6} T^{12} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{12} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−4.98676966003366157931403011100, −4.95055087164494135194294503703, −4.76189370129714084408958254134, −4.69361724017447109461350809707, −4.63112652596619947596383855799, −4.51814284840936683721311782164, −4.34016419538230622065122289447, −4.28484594528237478590613509647, −3.96779791187698894360331462799, −3.58693840095587296207611391122, −3.41974913888711034207875848598, −3.25501478348445739922291232627, −3.13241783977242895236028879296, −2.72385116470159023282838305025, −2.61487885678144888221684040194, −2.59969892386471425594724065270, −2.41668334275630003509019209442, −2.37834584677918873252825072152, −1.84189721348256383154906182178, −1.68406730606267219456071807991, −1.26392883376155372841798869972, −1.23147116243437430192303688059, −0.948929377273701275357502308683, −0.53283873545571116694495164634, −0.23376255480515898519890842593, 0.23376255480515898519890842593, 0.53283873545571116694495164634, 0.948929377273701275357502308683, 1.23147116243437430192303688059, 1.26392883376155372841798869972, 1.68406730606267219456071807991, 1.84189721348256383154906182178, 2.37834584677918873252825072152, 2.41668334275630003509019209442, 2.59969892386471425594724065270, 2.61487885678144888221684040194, 2.72385116470159023282838305025, 3.13241783977242895236028879296, 3.25501478348445739922291232627, 3.41974913888711034207875848598, 3.58693840095587296207611391122, 3.96779791187698894360331462799, 4.28484594528237478590613509647, 4.34016419538230622065122289447, 4.51814284840936683721311782164, 4.63112652596619947596383855799, 4.69361724017447109461350809707, 4.76189370129714084408958254134, 4.95055087164494135194294503703, 4.98676966003366157931403011100

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.