| L(s) = 1 | − 2-s + 2·5-s − 2·7-s + 8-s − 2·10-s − 3·11-s + 2·13-s + 2·14-s − 16-s + 6·17-s − 2·19-s + 3·22-s + 3·23-s + 3·25-s − 2·26-s + 3·29-s + 10·31-s − 6·34-s − 4·35-s + 7·37-s + 2·38-s + 2·40-s + 6·41-s + 43-s − 3·46-s + 6·47-s + 7·49-s + ⋯ |
| L(s) = 1 | − 0.707·2-s + 0.894·5-s − 0.755·7-s + 0.353·8-s − 0.632·10-s − 0.904·11-s + 0.554·13-s + 0.534·14-s − 1/4·16-s + 1.45·17-s − 0.458·19-s + 0.639·22-s + 0.625·23-s + 3/5·25-s − 0.392·26-s + 0.557·29-s + 1.79·31-s − 1.02·34-s − 0.676·35-s + 1.15·37-s + 0.324·38-s + 0.316·40-s + 0.937·41-s + 0.152·43-s − 0.442·46-s + 0.875·47-s + 49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1368900 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1368900 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.759956498\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.759956498\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.898045651769643600425840887257, −9.702932306045277440553716292731, −9.131266351065574372980335278591, −8.891070491682525532386658414183, −8.396685719652457620059457196034, −8.027689691280649030350978385673, −7.43220661310585432294035941412, −7.38393643800771498406094090820, −6.43301638102232684230158465435, −6.37696470863339451746065675156, −5.74666410942358355966111509415, −5.56679264005520412935511674874, −4.75035014705503777374577663516, −4.55150920627240293930766179360, −3.69954522738404830254584846954, −3.22900913174491688577637999713, −2.53773791588137724588296101243, −2.32901142162861317005420996765, −1.13259063017847461427288780275, −0.791444958194323520660811044946,
0.791444958194323520660811044946, 1.13259063017847461427288780275, 2.32901142162861317005420996765, 2.53773791588137724588296101243, 3.22900913174491688577637999713, 3.69954522738404830254584846954, 4.55150920627240293930766179360, 4.75035014705503777374577663516, 5.56679264005520412935511674874, 5.74666410942358355966111509415, 6.37696470863339451746065675156, 6.43301638102232684230158465435, 7.38393643800771498406094090820, 7.43220661310585432294035941412, 8.027689691280649030350978385673, 8.396685719652457620059457196034, 8.891070491682525532386658414183, 9.131266351065574372980335278591, 9.702932306045277440553716292731, 9.898045651769643600425840887257