| L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.499 − 0.866i)4-s + (0.230 + 2.22i)5-s + (0.432 + 0.749i)7-s − 0.999·8-s + (2.04 + 0.912i)10-s + (−0.151 − 0.0874i)11-s + (1.35 + 3.34i)13-s + 0.865·14-s + (−0.5 + 0.866i)16-s + (−7.08 + 4.08i)17-s + (5.20 − 3.00i)19-s + (1.81 − 1.31i)20-s + (−0.151 + 0.0874i)22-s + (−2.52 − 1.45i)23-s + ⋯ |
| L(s) = 1 | + (0.353 − 0.612i)2-s + (−0.249 − 0.433i)4-s + (0.103 + 0.994i)5-s + (0.163 + 0.283i)7-s − 0.353·8-s + (0.645 + 0.288i)10-s + (−0.0456 − 0.0263i)11-s + (0.375 + 0.926i)13-s + 0.231·14-s + (−0.125 + 0.216i)16-s + (−1.71 + 0.991i)17-s + (1.19 − 0.689i)19-s + (0.404 − 0.293i)20-s + (−0.0322 + 0.0186i)22-s + (−0.525 − 0.303i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1170 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.519 - 0.854i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1170 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.519 - 0.854i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.568741210\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.568741210\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.5 + 0.866i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-0.230 - 2.22i)T \) |
| 13 | \( 1 + (-1.35 - 3.34i)T \) |
| good | 7 | \( 1 + (-0.432 - 0.749i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (0.151 + 0.0874i)T + (5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (7.08 - 4.08i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-5.20 + 3.00i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (2.52 + 1.45i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (3.24 - 5.62i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 6.95iT - 31T^{2} \) |
| 37 | \( 1 + (0.879 - 1.52i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-7.08 - 4.08i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (7.94 - 4.58i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 - 11.9T + 47T^{2} \) |
| 53 | \( 1 + 2.48iT - 53T^{2} \) |
| 59 | \( 1 + (-6.09 + 3.51i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.98 - 6.90i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.36 + 2.36i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (12.2 - 7.08i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 12.8T + 73T^{2} \) |
| 79 | \( 1 - 9.48T + 79T^{2} \) |
| 83 | \( 1 + 0.139T + 83T^{2} \) |
| 89 | \( 1 + (-11.3 - 6.56i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (4.32 + 7.48i)T + (-48.5 + 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.11593820740273833075578144009, −9.132836084096629319067458530918, −8.543764948110287093293347463871, −7.18228858221750056945791977008, −6.58337557428661101182650108548, −5.67759057002446715548977813100, −4.57196816994907293257706082462, −3.66900816983850843650675411953, −2.64146707433797127088000626384, −1.69106317598736252695728973418,
0.59745214366309307442190523739, 2.28436956335805360819044365974, 3.77077125730298978919274305504, 4.51970692551565594956236615262, 5.49545403031767987635275088074, 6.02890106835917176538260035141, 7.37817669203159461587560184044, 7.80888590996714925796014417255, 8.823689476613080481235065629896, 9.389009274174898295030887900124