Properties

Label 2-117-13.10-c7-0-4
Degree $2$
Conductor $117$
Sign $0.0982 - 0.995i$
Analytic cond. $36.5490$
Root an. cond. $6.04558$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.588 + 0.339i)2-s + (−63.7 + 110. i)4-s − 439. i·5-s + (−1.12e3 − 651. i)7-s − 173. i·8-s + (149. + 258. i)10-s + (−497. + 287. i)11-s + (−7.89e3 − 676. i)13-s + 884.·14-s + (−8.10e3 − 1.40e4i)16-s + (5.63e3 − 9.75e3i)17-s + (3.55e4 + 2.05e4i)19-s + (4.85e4 + 2.80e4i)20-s + (195. − 338. i)22-s + (2.21e4 + 3.83e4i)23-s + ⋯
L(s)  = 1  + (−0.0519 + 0.0300i)2-s + (−0.498 + 0.862i)4-s − 1.57i·5-s + (−1.24 − 0.717i)7-s − 0.119i·8-s + (0.0471 + 0.0816i)10-s + (−0.112 + 0.0651i)11-s + (−0.996 − 0.0854i)13-s + 0.0861·14-s + (−0.494 − 0.856i)16-s + (0.278 − 0.481i)17-s + (1.18 + 0.686i)19-s + (1.35 + 0.782i)20-s + (0.00390 − 0.00676i)22-s + (0.379 + 0.656i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0982 - 0.995i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (0.0982 - 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(117\)    =    \(3^{2} \cdot 13\)
Sign: $0.0982 - 0.995i$
Analytic conductor: \(36.5490\)
Root analytic conductor: \(6.04558\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: $\chi_{117} (10, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 117,\ (\ :7/2),\ 0.0982 - 0.995i)\)

Particular Values

\(L(4)\) \(\approx\) \(0.5034649594\)
\(L(\frac12)\) \(\approx\) \(0.5034649594\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
13 \( 1 + (7.89e3 + 676. i)T \)
good2 \( 1 + (0.588 - 0.339i)T + (64 - 110. i)T^{2} \)
5 \( 1 + 439. iT - 7.81e4T^{2} \)
7 \( 1 + (1.12e3 + 651. i)T + (4.11e5 + 7.13e5i)T^{2} \)
11 \( 1 + (497. - 287. i)T + (9.74e6 - 1.68e7i)T^{2} \)
17 \( 1 + (-5.63e3 + 9.75e3i)T + (-2.05e8 - 3.55e8i)T^{2} \)
19 \( 1 + (-3.55e4 - 2.05e4i)T + (4.46e8 + 7.74e8i)T^{2} \)
23 \( 1 + (-2.21e4 - 3.83e4i)T + (-1.70e9 + 2.94e9i)T^{2} \)
29 \( 1 + (7.27e4 + 1.26e5i)T + (-8.62e9 + 1.49e10i)T^{2} \)
31 \( 1 - 1.22e5iT - 2.75e10T^{2} \)
37 \( 1 + (-3.63e4 + 2.10e4i)T + (4.74e10 - 8.22e10i)T^{2} \)
41 \( 1 + (-7.59e4 + 4.38e4i)T + (9.73e10 - 1.68e11i)T^{2} \)
43 \( 1 + (3.74e5 - 6.49e5i)T + (-1.35e11 - 2.35e11i)T^{2} \)
47 \( 1 - 9.40e5iT - 5.06e11T^{2} \)
53 \( 1 - 9.24e5T + 1.17e12T^{2} \)
59 \( 1 + (5.47e5 + 3.16e5i)T + (1.24e12 + 2.15e12i)T^{2} \)
61 \( 1 + (-3.22e4 + 5.57e4i)T + (-1.57e12 - 2.72e12i)T^{2} \)
67 \( 1 + (1.68e6 - 9.72e5i)T + (3.03e12 - 5.24e12i)T^{2} \)
71 \( 1 + (-4.09e6 - 2.36e6i)T + (4.54e12 + 7.87e12i)T^{2} \)
73 \( 1 - 1.92e6iT - 1.10e13T^{2} \)
79 \( 1 + 1.50e6T + 1.92e13T^{2} \)
83 \( 1 - 1.87e6iT - 2.71e13T^{2} \)
89 \( 1 + (3.78e6 - 2.18e6i)T + (2.21e13 - 3.83e13i)T^{2} \)
97 \( 1 + (1.53e6 + 8.86e5i)T + (4.03e13 + 6.99e13i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.59946804088750102311511681367, −11.78082564408266295604325248306, −9.728553195241438962704455216669, −9.442337698677274268768931900799, −8.074971468807948852870891348229, −7.21112867334952972752449262045, −5.40449035158273329114657474350, −4.31629156105891714112261428518, −3.13898802353662946593203183013, −0.916197980471188526339690714067, 0.19529219998113051122989062891, 2.34564469928854032796999867939, 3.40349986971108909560659182754, 5.29134515730877017363337080100, 6.35978641404938618277012169093, 7.23053929185441033298920232950, 9.054240157059138436513810224028, 9.911003184392670824072272174341, 10.60726276200901698859947691212, 11.81616550793269916144738582027

Graph of the $Z$-function along the critical line