| L(s) = 1 | + 63.1i·2-s − 1.93e3·4-s + 8.53e3i·5-s − 3.44e4i·7-s + 6.97e3i·8-s − 5.39e5·10-s − 9.98e3i·11-s + (5.37e5 − 1.22e6i)13-s + 2.17e6·14-s − 4.40e6·16-s − 2.39e6·17-s − 2.16e6i·19-s − 1.65e7i·20-s + 6.30e5·22-s + 4.46e7·23-s + ⋯ |
| L(s) = 1 | + 1.39i·2-s − 0.946·4-s + 1.22i·5-s − 0.774i·7-s + 0.0752i·8-s − 1.70·10-s − 0.0186i·11-s + (0.401 − 0.915i)13-s + 1.08·14-s − 1.05·16-s − 0.409·17-s − 0.201i·19-s − 1.15i·20-s + 0.0260·22-s + 1.44·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.401 - 0.915i)\, \overline{\Lambda}(12-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s+11/2) \, L(s)\cr =\mathstrut & (0.401 - 0.915i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(6)\) |
\(\approx\) |
\(1.882585125\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.882585125\) |
| \(L(\frac{13}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 13 | \( 1 + (-5.37e5 + 1.22e6i)T \) |
| good | 2 | \( 1 - 63.1iT - 2.04e3T^{2} \) |
| 5 | \( 1 - 8.53e3iT - 4.88e7T^{2} \) |
| 7 | \( 1 + 3.44e4iT - 1.97e9T^{2} \) |
| 11 | \( 1 + 9.98e3iT - 2.85e11T^{2} \) |
| 17 | \( 1 + 2.39e6T + 3.42e13T^{2} \) |
| 19 | \( 1 + 2.16e6iT - 1.16e14T^{2} \) |
| 23 | \( 1 - 4.46e7T + 9.52e14T^{2} \) |
| 29 | \( 1 + 4.30e7T + 1.22e16T^{2} \) |
| 31 | \( 1 + 2.22e8iT - 2.54e16T^{2} \) |
| 37 | \( 1 + 8.02e8iT - 1.77e17T^{2} \) |
| 41 | \( 1 - 2.38e8iT - 5.50e17T^{2} \) |
| 43 | \( 1 + 2.50e8T + 9.29e17T^{2} \) |
| 47 | \( 1 - 4.54e8iT - 2.47e18T^{2} \) |
| 53 | \( 1 - 3.42e9T + 9.26e18T^{2} \) |
| 59 | \( 1 + 8.20e9iT - 3.01e19T^{2} \) |
| 61 | \( 1 - 1.48e9T + 4.35e19T^{2} \) |
| 67 | \( 1 + 1.83e9iT - 1.22e20T^{2} \) |
| 71 | \( 1 + 2.10e10iT - 2.31e20T^{2} \) |
| 73 | \( 1 - 1.39e10iT - 3.13e20T^{2} \) |
| 79 | \( 1 - 2.33e10T + 7.47e20T^{2} \) |
| 83 | \( 1 - 1.09e10iT - 1.28e21T^{2} \) |
| 89 | \( 1 - 7.04e10iT - 2.77e21T^{2} \) |
| 97 | \( 1 - 9.76e10iT - 7.15e21T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.19003418863503009597921061472, −10.66660922485821285355901101463, −9.230418303372023304456936886525, −7.903521925490802203623737816124, −7.17349302084397208034583268790, −6.40343846396422211463666152222, −5.29957262586669074032854161476, −3.82977710891918381452983242220, −2.50187986925682454503849653433, −0.50553458840398305344561717964,
0.953246846716437254848193601616, 1.72699200029537545557637554968, 2.95760681090249923703773496828, 4.27047867714301132594285377825, 5.22585835918412754313071513204, 6.79399146003080104965482438733, 8.740334884205056080800898280930, 9.012639519281615109154617613386, 10.26394307424696404968988869212, 11.44338494415018832196940686479