| L(s) = 1 | + 25.2i·2-s + 1.40e3·4-s − 3.30e3i·5-s + 5.10e4i·7-s + 8.74e4i·8-s + 8.35e4·10-s − 3.90e5i·11-s + (1.12e6 − 7.20e5i)13-s − 1.29e6·14-s + 6.72e5·16-s + 6.18e6·17-s − 1.15e7i·19-s − 4.64e6i·20-s + 9.87e6·22-s − 8.42e6·23-s + ⋯ |
| L(s) = 1 | + 0.558i·2-s + 0.687·4-s − 0.472i·5-s + 1.14i·7-s + 0.943i·8-s + 0.264·10-s − 0.730i·11-s + (0.842 − 0.537i)13-s − 0.641·14-s + 0.160·16-s + 1.05·17-s − 1.06i·19-s − 0.324i·20-s + 0.408·22-s − 0.272·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.842 - 0.537i)\, \overline{\Lambda}(12-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s+11/2) \, L(s)\cr =\mathstrut & (0.842 - 0.537i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(6)\) |
\(\approx\) |
\(3.081218183\) |
| \(L(\frac12)\) |
\(\approx\) |
\(3.081218183\) |
| \(L(\frac{13}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 13 | \( 1 + (-1.12e6 + 7.20e5i)T \) |
| good | 2 | \( 1 - 25.2iT - 2.04e3T^{2} \) |
| 5 | \( 1 + 3.30e3iT - 4.88e7T^{2} \) |
| 7 | \( 1 - 5.10e4iT - 1.97e9T^{2} \) |
| 11 | \( 1 + 3.90e5iT - 2.85e11T^{2} \) |
| 17 | \( 1 - 6.18e6T + 3.42e13T^{2} \) |
| 19 | \( 1 + 1.15e7iT - 1.16e14T^{2} \) |
| 23 | \( 1 + 8.42e6T + 9.52e14T^{2} \) |
| 29 | \( 1 + 1.57e8T + 1.22e16T^{2} \) |
| 31 | \( 1 - 7.17e7iT - 2.54e16T^{2} \) |
| 37 | \( 1 - 2.91e7iT - 1.77e17T^{2} \) |
| 41 | \( 1 + 9.25e8iT - 5.50e17T^{2} \) |
| 43 | \( 1 - 2.68e8T + 9.29e17T^{2} \) |
| 47 | \( 1 + 1.75e9iT - 2.47e18T^{2} \) |
| 53 | \( 1 - 5.81e9T + 9.26e18T^{2} \) |
| 59 | \( 1 - 8.17e8iT - 3.01e19T^{2} \) |
| 61 | \( 1 + 6.68e8T + 4.35e19T^{2} \) |
| 67 | \( 1 - 1.11e10iT - 1.22e20T^{2} \) |
| 71 | \( 1 + 1.62e10iT - 2.31e20T^{2} \) |
| 73 | \( 1 - 2.14e10iT - 3.13e20T^{2} \) |
| 79 | \( 1 - 2.83e10T + 7.47e20T^{2} \) |
| 83 | \( 1 + 2.57e9iT - 1.28e21T^{2} \) |
| 89 | \( 1 + 9.33e9iT - 2.77e21T^{2} \) |
| 97 | \( 1 - 5.74e10iT - 7.15e21T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.54018969709263382167800083439, −10.58297601182823039102363302511, −8.977235469184190311639339555046, −8.354781313948874887951242246591, −7.12457980319554179479411351978, −5.81015402354428535701084803918, −5.35929570263624328866155540146, −3.38114673507208015292786920147, −2.23630549161008262001997369723, −0.845031130732693362681701521144,
0.953646232355366916823013326040, 1.86958578387262666188833979382, 3.30923372157921439343254845350, 4.12897639908539341354803084105, 5.98252363246887113944989598225, 7.04582024680185130794887254199, 7.80395697912270184905741579415, 9.615344735406426952521805927202, 10.42571858351894458523192912243, 11.14899205211636509059619976622