Properties

Degree 2
Conductor $ 3^{2} \cdot 13 $
Sign $0.957 + 0.289i$
Motivic weight 0
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  i·4-s + (−1 + i)7-s + i·13-s − 16-s + (−1 − i)19-s i·25-s + (1 + i)28-s + (1 + i)31-s + (1 − i)37-s i·49-s + 52-s + i·64-s + (−1 − i)67-s + (−1 + i)73-s + (−1 + i)76-s + ⋯
L(s)  = 1  i·4-s + (−1 + i)7-s + i·13-s − 16-s + (−1 − i)19-s i·25-s + (1 + i)28-s + (1 + i)31-s + (1 − i)37-s i·49-s + 52-s + i·64-s + (−1 − i)67-s + (−1 + i)73-s + (−1 + i)76-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.957 + 0.289i)\, \overline{\Lambda}(1-s) \end{aligned} \]
\[\begin{aligned} \Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.957 + 0.289i)\, \overline{\Lambda}(1-s) \end{aligned} \]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(117\)    =    \(3^{2} \cdot 13\)
\( \varepsilon \)  =  $0.957 + 0.289i$
motivic weight  =  \(0\)
character  :  $\chi_{117} (73, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(2,\ 117,\ (\ :0),\ 0.957 + 0.289i)$
$L(\frac{1}{2})$  $\approx$  $0.5569436756$
$L(\frac12)$  $\approx$  $0.5569436756$
$L(1)$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \] where, for $p \notin \{3,\;13\}$, \(F_p\) is a polynomial of degree 2. If $p \in \{3,\;13\}$, then $F_p$ is a polynomial of degree at most 1.
$p$$F_p$
bad3 \( 1 \)
13 \( 1 - iT \)
good2 \( 1 + iT^{2} \)
5 \( 1 + iT^{2} \)
7 \( 1 + (1 - i)T - iT^{2} \)
11 \( 1 - iT^{2} \)
17 \( 1 - T^{2} \)
19 \( 1 + (1 + i)T + iT^{2} \)
23 \( 1 - T^{2} \)
29 \( 1 + T^{2} \)
31 \( 1 + (-1 - i)T + iT^{2} \)
37 \( 1 + (-1 + i)T - iT^{2} \)
41 \( 1 + iT^{2} \)
43 \( 1 - T^{2} \)
47 \( 1 - iT^{2} \)
53 \( 1 + T^{2} \)
59 \( 1 - iT^{2} \)
61 \( 1 + T^{2} \)
67 \( 1 + (1 + i)T + iT^{2} \)
71 \( 1 + iT^{2} \)
73 \( 1 + (1 - i)T - iT^{2} \)
79 \( 1 + T^{2} \)
83 \( 1 + iT^{2} \)
89 \( 1 - iT^{2} \)
97 \( 1 + (-1 - i)T + iT^{2} \)
show more
show less
\[\begin{aligned} L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−13.80990494819017442544207341531, −12.72164914596868163355269831842, −11.67036785348349858475122944719, −10.52450589542211795910627174439, −9.460599077616326652932631890719, −8.744582829751551591102352480621, −6.74227370788945589021286031122, −6.02436325627031227717949276801, −4.57945296969333583056588158114, −2.45453865405386386796231817165, 3.10156635655119368499674695018, 4.21585912692895745454493259751, 6.18811586118836933892295665132, 7.37991611206024721121675636931, 8.287424301189132676813928040431, 9.701049372459152198528131483308, 10.65262963256653539214358760704, 11.93499686341665259569750108108, 13.05270677275964737188948525381, 13.36001136281506947321561544962

Graph of the $Z$-function along the critical line