L(s) = 1 | + i·4-s + (−1 − i)7-s − i·13-s
− 16-s + (−1 + i)19-s + i·25-s
+ (1 − i)28-s + (1 − i)31-s + (1 + i)37-s
+ i·49-s + 52-s − i·64-s
+ (−1 + i)67-s + (−1 − i)73-s + (−1 − i)76-s
+ ⋯
|
L(s) = 1 | + i·4-s + (−1 − i)7-s − i·13-s
− 16-s + (−1 + i)19-s + i·25-s
+ (1 − i)28-s + (1 − i)31-s + (1 + i)37-s
+ i·49-s + 52-s − i·64-s
+ (−1 + i)67-s + (−1 − i)73-s + (−1 − i)76-s
+ ⋯
|
\[\begin{aligned}
\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr
=\mathstrut & (0.957 - 0.289i)\, \overline{\Lambda}(1-s)
\end{aligned}
\]
\[\begin{aligned}
\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr
=\mathstrut & (0.957 - 0.289i)\, \overline{\Lambda}(1-s)
\end{aligned}
\]
\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]
where, for $p \notin \{3,\;13\}$,
\(F_p\) is a polynomial of degree 2. If $p \in \{3,\;13\}$, then $F_p$ is a polynomial of degree at most 1.
| $p$ | $F_p$ |
bad | 3 | \( 1 \) |
| 13 | \( 1 + iT \) |
good | 2 | \( 1 - iT^{2} \) |
| 5 | \( 1 - iT^{2} \) |
| 7 | \( 1 + (1 + i)T + iT^{2} \) |
| 11 | \( 1 + iT^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 + (1 - i)T - iT^{2} \) |
| 23 | \( 1 - T^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 + (-1 + i)T - iT^{2} \) |
| 37 | \( 1 + (-1 - i)T + iT^{2} \) |
| 41 | \( 1 - iT^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 + iT^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 + iT^{2} \) |
| 61 | \( 1 + T^{2} \) |
| 67 | \( 1 + (1 - i)T - iT^{2} \) |
| 71 | \( 1 - iT^{2} \) |
| 73 | \( 1 + (1 + i)T + iT^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 - iT^{2} \) |
| 89 | \( 1 + iT^{2} \) |
| 97 | \( 1 + (-1 + i)T - iT^{2} \) |
show more | |
show less | |
\[\begin{aligned}
L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}
\end{aligned}\]
Imaginary part of the first few zeros on the critical line
−13.36001136281506947321561544962, −13.05270677275964737188948525381, −11.93499686341665259569750108108, −10.65262963256653539214358760704, −9.701049372459152198528131483308, −8.287424301189132676813928040431, −7.37991611206024721121675636931, −6.18811586118836933892295665132, −4.21585912692895745454493259751, −3.10156635655119368499674695018,
2.45453865405386386796231817165, 4.57945296969333583056588158114, 6.02436325627031227717949276801, 6.74227370788945589021286031122, 8.744582829751551591102352480621, 9.460599077616326652932631890719, 10.52450589542211795910627174439, 11.67036785348349858475122944719, 12.72164914596868163355269831842, 13.80990494819017442544207341531