# Properties

 Degree 2 Conductor $3^{2} \cdot 13$ Sign $0.957 - 0.289i$ Motivic weight 0 Primitive yes Self-dual no Analytic rank 0

# Related objects

## Dirichlet series

 L(s)  = 1 + i·4-s + (−1 − i)7-s − i·13-s − 16-s + (−1 + i)19-s + i·25-s + (1 − i)28-s + (1 − i)31-s + (1 + i)37-s + i·49-s + 52-s − i·64-s + (−1 + i)67-s + (−1 − i)73-s + (−1 − i)76-s + ⋯
 L(s)  = 1 + i·4-s + (−1 − i)7-s − i·13-s − 16-s + (−1 + i)19-s + i·25-s + (1 − i)28-s + (1 − i)31-s + (1 + i)37-s + i·49-s + 52-s − i·64-s + (−1 + i)67-s + (−1 − i)73-s + (−1 − i)76-s + ⋯

## Functional equation

\begin{aligned} \Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.957 - 0.289i)\, \overline{\Lambda}(1-s) \end{aligned}
\begin{aligned} \Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.957 - 0.289i)\, \overline{\Lambda}(1-s) \end{aligned}

## Invariants

 $$d$$ = $$2$$ $$N$$ = $$117$$    =    $$3^{2} \cdot 13$$ $$\varepsilon$$ = $0.957 - 0.289i$ motivic weight = $$0$$ character : $\chi_{117} (109, \cdot )$ primitive : yes self-dual : no analytic rank = 0 Selberg data = $(2,\ 117,\ (\ :0),\ 0.957 - 0.289i)$ $L(\frac{1}{2})$ $\approx$ $0.5569436756$ $L(\frac12)$ $\approx$ $0.5569436756$ $L(1)$ not available $L(1)$ not available

## Euler product

$L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1}$ where, for $p \notin \{3,\;13\}$, $$F_p$$ is a polynomial of degree 2. If $p \in \{3,\;13\}$, then $F_p$ is a polynomial of degree at most 1.
$p$$F_p$
bad3 $$1$$
13 $$1 + iT$$
good2 $$1 - iT^{2}$$
5 $$1 - iT^{2}$$
7 $$1 + (1 + i)T + iT^{2}$$
11 $$1 + iT^{2}$$
17 $$1 - T^{2}$$
19 $$1 + (1 - i)T - iT^{2}$$
23 $$1 - T^{2}$$
29 $$1 + T^{2}$$
31 $$1 + (-1 + i)T - iT^{2}$$
37 $$1 + (-1 - i)T + iT^{2}$$
41 $$1 - iT^{2}$$
43 $$1 - T^{2}$$
47 $$1 + iT^{2}$$
53 $$1 + T^{2}$$
59 $$1 + iT^{2}$$
61 $$1 + T^{2}$$
67 $$1 + (1 - i)T - iT^{2}$$
71 $$1 - iT^{2}$$
73 $$1 + (1 + i)T + iT^{2}$$
79 $$1 + T^{2}$$
83 $$1 - iT^{2}$$
89 $$1 + iT^{2}$$
97 $$1 + (-1 + i)T - iT^{2}$$
\begin{aligned} L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1} \end{aligned}