Properties

Degree $2$
Conductor $1152$
Sign $-0.839 - 0.543i$
Motivic weight $2$
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (1.69 − 1.69i)5-s − 5.74·7-s + (−5.59 − 5.59i)11-s + (13.5 + 13.5i)13-s − 19.7·17-s + (21.6 − 21.6i)19-s − 24.9·23-s + 19.2i·25-s + (1.50 + 1.50i)29-s − 2.20i·31-s + (−9.75 + 9.75i)35-s + (−27.6 + 27.6i)37-s − 51.3i·41-s + (−21.4 − 21.4i)43-s + 76.5i·47-s + ⋯
L(s)  = 1  + (0.339 − 0.339i)5-s − 0.820·7-s + (−0.508 − 0.508i)11-s + (1.04 + 1.04i)13-s − 1.15·17-s + (1.14 − 1.14i)19-s − 1.08·23-s + 0.768i·25-s + (0.0519 + 0.0519i)29-s − 0.0709i·31-s + (−0.278 + 0.278i)35-s + (−0.748 + 0.748i)37-s − 1.25i·41-s + (−0.498 − 0.498i)43-s + 1.62i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.839 - 0.543i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.839 - 0.543i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1152\)    =    \(2^{7} \cdot 3^{2}\)
Sign: $-0.839 - 0.543i$
Motivic weight: \(2\)
Character: $\chi_{1152} (991, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1152,\ (\ :1),\ -0.839 - 0.543i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.3320511531\)
\(L(\frac12)\) \(\approx\) \(0.3320511531\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 + (-1.69 + 1.69i)T - 25iT^{2} \)
7 \( 1 + 5.74T + 49T^{2} \)
11 \( 1 + (5.59 + 5.59i)T + 121iT^{2} \)
13 \( 1 + (-13.5 - 13.5i)T + 169iT^{2} \)
17 \( 1 + 19.7T + 289T^{2} \)
19 \( 1 + (-21.6 + 21.6i)T - 361iT^{2} \)
23 \( 1 + 24.9T + 529T^{2} \)
29 \( 1 + (-1.50 - 1.50i)T + 841iT^{2} \)
31 \( 1 + 2.20iT - 961T^{2} \)
37 \( 1 + (27.6 - 27.6i)T - 1.36e3iT^{2} \)
41 \( 1 + 51.3iT - 1.68e3T^{2} \)
43 \( 1 + (21.4 + 21.4i)T + 1.84e3iT^{2} \)
47 \( 1 - 76.5iT - 2.20e3T^{2} \)
53 \( 1 + (56.5 - 56.5i)T - 2.80e3iT^{2} \)
59 \( 1 + (48.0 + 48.0i)T + 3.48e3iT^{2} \)
61 \( 1 + (-51.5 - 51.5i)T + 3.72e3iT^{2} \)
67 \( 1 + (63.4 - 63.4i)T - 4.48e3iT^{2} \)
71 \( 1 + 43.4T + 5.04e3T^{2} \)
73 \( 1 - 73.9iT - 5.32e3T^{2} \)
79 \( 1 + 4.12iT - 6.24e3T^{2} \)
83 \( 1 + (-38.4 + 38.4i)T - 6.88e3iT^{2} \)
89 \( 1 - 52.9iT - 7.92e3T^{2} \)
97 \( 1 - 23.1T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.754050342293063036387712472877, −9.116563364866015628068183732659, −8.555507344136361528480567558713, −7.35484850199326445188699792714, −6.53514056223975222607000672825, −5.82623366542187523471031637850, −4.80676201047679031326297085721, −3.76028367524235089794469396801, −2.74718267336516854861190518698, −1.43558350866614924142698427639, 0.096087929942895561921994497153, 1.78379403041117518399360182631, 2.99398971797760517493011365900, 3.79401048559178170907644735031, 5.07528252025623176170798387701, 6.05365836041966704929761652526, 6.55976459879747777927102893678, 7.71900407721907009909035095092, 8.352121432223272762073318656055, 9.449468638012604225762706024357

Graph of the $Z$-function along the critical line