Properties

Label 2-1152-3.2-c2-0-22
Degree $2$
Conductor $1152$
Sign $0.816 + 0.577i$
Analytic cond. $31.3897$
Root an. cond. $5.60265$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.87i·5-s + 11.7·7-s − 9.75i·11-s + 22.6·13-s + 22.1i·17-s + 17.7·19-s + 14.1i·23-s + 1.20·25-s + 20.0i·29-s − 39.7·31-s − 57.5i·35-s + 2.40·37-s − 64.3i·41-s − 3.19·43-s + 41.8i·47-s + ⋯
L(s)  = 1  − 0.975i·5-s + 1.68·7-s − 0.886i·11-s + 1.74·13-s + 1.30i·17-s + 0.936·19-s + 0.614i·23-s + 0.0480·25-s + 0.689i·29-s − 1.28·31-s − 1.64i·35-s + 0.0649·37-s − 1.56i·41-s − 0.0742·43-s + 0.890i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.816 + 0.577i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.816 + 0.577i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1152\)    =    \(2^{7} \cdot 3^{2}\)
Sign: $0.816 + 0.577i$
Analytic conductor: \(31.3897\)
Root analytic conductor: \(5.60265\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{1152} (1025, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1152,\ (\ :1),\ 0.816 + 0.577i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(2.737268376\)
\(L(\frac12)\) \(\approx\) \(2.737268376\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 + 4.87iT - 25T^{2} \)
7 \( 1 - 11.7T + 49T^{2} \)
11 \( 1 + 9.75iT - 121T^{2} \)
13 \( 1 - 22.6T + 169T^{2} \)
17 \( 1 - 22.1iT - 289T^{2} \)
19 \( 1 - 17.7T + 361T^{2} \)
23 \( 1 - 14.1iT - 529T^{2} \)
29 \( 1 - 20.0iT - 841T^{2} \)
31 \( 1 + 39.7T + 961T^{2} \)
37 \( 1 - 2.40T + 1.36e3T^{2} \)
41 \( 1 + 64.3iT - 1.68e3T^{2} \)
43 \( 1 + 3.19T + 1.84e3T^{2} \)
47 \( 1 - 41.8iT - 2.20e3T^{2} \)
53 \( 1 + 55.5iT - 2.80e3T^{2} \)
59 \( 1 - 111. iT - 3.48e3T^{2} \)
61 \( 1 - 10.8T + 3.72e3T^{2} \)
67 \( 1 - 18.2T + 4.48e3T^{2} \)
71 \( 1 - 34.7iT - 5.04e3T^{2} \)
73 \( 1 - 87.5T + 5.32e3T^{2} \)
79 \( 1 + 151.T + 6.24e3T^{2} \)
83 \( 1 + 61.8iT - 6.88e3T^{2} \)
89 \( 1 - 72.9iT - 7.92e3T^{2} \)
97 \( 1 + 87.3T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.207408412963230691747341597919, −8.485509693048773961638673942771, −8.281567692787539097757064584949, −7.19944141825297892291529587106, −5.73406212290827148627414227820, −5.45942710637491885482425785451, −4.28666832246855934467810085472, −3.49863608057542802153529209218, −1.64513824805958347761063949998, −1.09887086528424428603225214146, 1.18863233940166937218035288576, 2.28263349037320405481259106420, 3.45281095773801990893895710986, 4.55581854293897182294286651879, 5.33668375725893806755088948981, 6.44132774630775759457762336923, 7.29965959603804591796974620008, 7.930149801449558316958744492954, 8.797029691106530894916837716743, 9.738349856087196910688502794635

Graph of the $Z$-function along the critical line