Properties

Label 8-1152e4-1.1-c2e4-0-17
Degree $8$
Conductor $1.761\times 10^{12}$
Sign $1$
Analytic cond. $970845.$
Root an. cond. $5.60265$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·7-s + 32·13-s − 32·19-s + 72·25-s + 120·31-s + 88·37-s − 144·43-s + 36·49-s + 200·61-s − 112·67-s + 272·73-s + 488·79-s − 256·91-s + 160·97-s + 40·103-s + 192·109-s + 372·121-s + 127-s + 131-s + 256·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯
L(s)  = 1  − 8/7·7-s + 2.46·13-s − 1.68·19-s + 2.87·25-s + 3.87·31-s + 2.37·37-s − 3.34·43-s + 0.734·49-s + 3.27·61-s − 1.67·67-s + 3.72·73-s + 6.17·79-s − 2.81·91-s + 1.64·97-s + 0.388·103-s + 1.76·109-s + 3.07·121-s + 0.00787·127-s + 0.00763·131-s + 1.92·133-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{28} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{28} \cdot 3^{8}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{28} \cdot 3^{8}\)
Sign: $1$
Analytic conductor: \(970845.\)
Root analytic conductor: \(5.60265\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{28} \cdot 3^{8} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(9.914162348\)
\(L(\frac12)\) \(\approx\) \(9.914162348\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$D_4\times C_2$ \( 1 - 72 T^{2} + 98 p^{2} T^{4} - 72 p^{4} T^{6} + p^{8} T^{8} \)
7$D_{4}$ \( ( 1 + 4 T + 6 T^{2} + 4 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
11$D_4\times C_2$ \( 1 - 372 T^{2} + 62342 T^{4} - 372 p^{4} T^{6} + p^{8} T^{8} \)
13$D_{4}$ \( ( 1 - 16 T + 186 T^{2} - 16 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
17$D_4\times C_2$ \( 1 - 288 T^{2} + 184322 T^{4} - 288 p^{4} T^{6} + p^{8} T^{8} \)
19$D_{4}$ \( ( 1 + 16 T + 690 T^{2} + 16 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 - 858 T^{2} + p^{4} T^{4} )^{2} \)
29$D_4\times C_2$ \( 1 - 2152 T^{2} + 2530002 T^{4} - 2152 p^{4} T^{6} + p^{8} T^{8} \)
31$D_{4}$ \( ( 1 - 60 T + 2726 T^{2} - 60 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
37$D_{4}$ \( ( 1 - 44 T + 2838 T^{2} - 44 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
41$D_4\times C_2$ \( 1 - 2560 T^{2} + 3056322 T^{4} - 2560 p^{4} T^{6} + p^{8} T^{8} \)
43$D_{4}$ \( ( 1 + 72 T + 3458 T^{2} + 72 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
47$D_4\times C_2$ \( 1 - 6900 T^{2} + 21047462 T^{4} - 6900 p^{4} T^{6} + p^{8} T^{8} \)
53$D_4\times C_2$ \( 1 - 7720 T^{2} + 28930962 T^{4} - 7720 p^{4} T^{6} + p^{8} T^{8} \)
59$D_4\times C_2$ \( 1 + 1500 T^{2} + 2678822 T^{4} + 1500 p^{4} T^{6} + p^{8} T^{8} \)
61$D_{4}$ \( ( 1 - 100 T + 8406 T^{2} - 100 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
67$D_{4}$ \( ( 1 + 56 T + 9666 T^{2} + 56 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
71$D_4\times C_2$ \( 1 - 5044 T^{2} + 16873062 T^{4} - 5044 p^{4} T^{6} + p^{8} T^{8} \)
73$D_{4}$ \( ( 1 - 136 T + 14898 T^{2} - 136 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
79$D_{4}$ \( ( 1 - 244 T + 26502 T^{2} - 244 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
83$D_4\times C_2$ \( 1 + 1484 T^{2} - 19009338 T^{4} + 1484 p^{4} T^{6} + p^{8} T^{8} \)
89$D_4\times C_2$ \( 1 - 11712 T^{2} + 138025922 T^{4} - 11712 p^{4} T^{6} + p^{8} T^{8} \)
97$D_{4}$ \( ( 1 - 80 T + 4194 T^{2} - 80 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.60254571919395091490225932391, −6.44756765501538743747378083602, −6.34316156392988476286734484842, −6.29693974714068648246736462153, −6.21962193758682821396390053536, −5.89730636616002723261691303036, −5.29525766982348591059551325014, −5.17495139039200293657770062535, −5.07427648830470285342561506383, −4.70509501026542093917886100050, −4.50930034401196248040163480042, −4.23107456992774786149850739134, −4.11851923872372311323664836202, −3.56235614940779048055702393723, −3.49606165359999204617861739657, −3.20539105197509127788600172019, −3.12383612065350244356248261814, −2.80707541237407016429972654944, −2.18724792164058654673041289687, −2.14715592456740725073104647783, −2.00529509394838221187036970604, −1.16101150000073812417668539232, −0.813123870968506483201611632886, −0.72743883995929549268976671204, −0.65950472578928345040594991349, 0.65950472578928345040594991349, 0.72743883995929549268976671204, 0.813123870968506483201611632886, 1.16101150000073812417668539232, 2.00529509394838221187036970604, 2.14715592456740725073104647783, 2.18724792164058654673041289687, 2.80707541237407016429972654944, 3.12383612065350244356248261814, 3.20539105197509127788600172019, 3.49606165359999204617861739657, 3.56235614940779048055702393723, 4.11851923872372311323664836202, 4.23107456992774786149850739134, 4.50930034401196248040163480042, 4.70509501026542093917886100050, 5.07427648830470285342561506383, 5.17495139039200293657770062535, 5.29525766982348591059551325014, 5.89730636616002723261691303036, 6.21962193758682821396390053536, 6.29693974714068648246736462153, 6.34316156392988476286734484842, 6.44756765501538743747378083602, 6.60254571919395091490225932391

Graph of the $Z$-function along the critical line