Properties

Label 2-1150-1.1-c1-0-26
Degree $2$
Conductor $1150$
Sign $-1$
Analytic cond. $9.18279$
Root an. cond. $3.03031$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 2·3-s + 4-s − 2·6-s − 7-s + 8-s + 9-s + 5·11-s − 2·12-s − 7·13-s − 14-s + 16-s + 18-s − 7·19-s + 2·21-s + 5·22-s + 23-s − 2·24-s − 7·26-s + 4·27-s − 28-s + 5·29-s − 10·31-s + 32-s − 10·33-s + 36-s − 2·37-s + ⋯
L(s)  = 1  + 0.707·2-s − 1.15·3-s + 1/2·4-s − 0.816·6-s − 0.377·7-s + 0.353·8-s + 1/3·9-s + 1.50·11-s − 0.577·12-s − 1.94·13-s − 0.267·14-s + 1/4·16-s + 0.235·18-s − 1.60·19-s + 0.436·21-s + 1.06·22-s + 0.208·23-s − 0.408·24-s − 1.37·26-s + 0.769·27-s − 0.188·28-s + 0.928·29-s − 1.79·31-s + 0.176·32-s − 1.74·33-s + 1/6·36-s − 0.328·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1150 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1150\)    =    \(2 \cdot 5^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(9.18279\)
Root analytic conductor: \(3.03031\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1150,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
5 \( 1 \)
23 \( 1 - T \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
7 \( 1 + T + p T^{2} \) 1.7.b
11 \( 1 - 5 T + p T^{2} \) 1.11.af
13 \( 1 + 7 T + p T^{2} \) 1.13.h
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 7 T + p T^{2} \) 1.19.h
29 \( 1 - 5 T + p T^{2} \) 1.29.af
31 \( 1 + 10 T + p T^{2} \) 1.31.k
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 3 T + p T^{2} \) 1.41.ad
43 \( 1 + 9 T + p T^{2} \) 1.43.j
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 4 T + p T^{2} \) 1.53.e
59 \( 1 + 2 T + p T^{2} \) 1.59.c
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + 2 T + p T^{2} \) 1.71.c
73 \( 1 - 7 T + p T^{2} \) 1.73.ah
79 \( 1 - T + p T^{2} \) 1.79.ab
83 \( 1 + 17 T + p T^{2} \) 1.83.r
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 4 T + p T^{2} \) 1.97.e
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.597432256668881742495139167686, −8.627804380295061875284664152200, −7.29484271368926743487815004271, −6.61309405130226386181755674891, −6.07981170530492068497451174291, −4.98959050725611850944044633525, −4.44264405651524113529607292049, −3.21966337768408157347843564951, −1.85622918971842028675810874009, 0, 1.85622918971842028675810874009, 3.21966337768408157347843564951, 4.44264405651524113529607292049, 4.98959050725611850944044633525, 6.07981170530492068497451174291, 6.61309405130226386181755674891, 7.29484271368926743487815004271, 8.627804380295061875284664152200, 9.597432256668881742495139167686

Graph of the $Z$-function along the critical line