Properties

Label 16-1134e8-1.1-c1e8-0-3
Degree $16$
Conductor $2.735\times 10^{24}$
Sign $1$
Analytic cond. $4.51982\times 10^{7}$
Root an. cond. $3.00915$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·4-s + 4·7-s + 16-s + 8·25-s + 8·28-s − 16·37-s − 16·43-s + 18·49-s − 2·64-s − 32·67-s + 40·79-s + 16·100-s + 80·109-s + 4·112-s − 44·121-s + 127-s + 131-s + 137-s + 139-s − 32·148-s + 149-s + 151-s + 157-s + 163-s + 167-s − 40·169-s − 32·172-s + ⋯
L(s)  = 1  + 4-s + 1.51·7-s + 1/4·16-s + 8/5·25-s + 1.51·28-s − 2.63·37-s − 2.43·43-s + 18/7·49-s − 1/4·64-s − 3.90·67-s + 4.50·79-s + 8/5·100-s + 7.66·109-s + 0.377·112-s − 4·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 2.63·148-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 3.07·169-s − 2.43·172-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{32} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{32} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(2^{8} \cdot 3^{32} \cdot 7^{8}\)
Sign: $1$
Analytic conductor: \(4.51982\times 10^{7}\)
Root analytic conductor: \(3.00915\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 2^{8} \cdot 3^{32} \cdot 7^{8} ,\ ( \ : [1/2]^{8} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(2.798109969\)
\(L(\frac12)\) \(\approx\) \(2.798109969\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( ( 1 - T^{2} + T^{4} )^{2} \)
3 \( 1 \)
7 \( ( 1 - 2 T - 3 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
good5 \( ( 1 - 4 T^{2} - 9 T^{4} - 4 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
11 \( ( 1 + p T^{2} + p^{2} T^{4} )^{4} \)
13 \( ( 1 + 20 T^{2} + 231 T^{4} + 20 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
17 \( ( 1 + 10 T^{2} + p^{2} T^{4} )^{4} \)
19 \( ( 1 - 32 T^{2} + p^{2} T^{4} )^{4} \)
23 \( ( 1 + 10 T^{2} - 429 T^{4} + 10 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
29 \( ( 1 + 22 T^{2} - 357 T^{4} + 22 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
31 \( ( 1 + p T^{2} + p^{2} T^{4} )^{4} \)
37 \( ( 1 + 2 T + p T^{2} )^{8} \)
41 \( ( 1 - 58 T^{2} + 1683 T^{4} - 58 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
43 \( ( 1 + 4 T - 27 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{4} \)
47 \( ( 1 - 70 T^{2} + 2691 T^{4} - 70 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
53 \( ( 1 - 70 T^{2} + p^{2} T^{4} )^{4} \)
59 \( ( 1 + 32 T^{2} - 2457 T^{4} + 32 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
61 \( ( 1 - 28 T^{2} - 2937 T^{4} - 28 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
67 \( ( 1 + 8 T - 3 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{4} \)
71 \( ( 1 - p T^{2} )^{8} \)
73 \( ( 1 - 14 T + p T^{2} )^{4}( 1 + 14 T + p T^{2} )^{4} \)
79 \( ( 1 - 10 T + 21 T^{2} - 10 p T^{3} + p^{2} T^{4} )^{4} \)
83 \( ( 1 - 160 T^{2} + 18711 T^{4} - 160 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
89 \( ( 1 + p T^{2} )^{8} \)
97 \( ( 1 + 170 T^{2} + 19491 T^{4} + 170 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−4.20803664220089564087435087609, −3.95458978231539740410451644877, −3.89481167934856389867900410432, −3.81277482729393081722216660919, −3.59456103539812716258165621470, −3.59103740701272334135111319919, −3.34598790844061005218052725199, −3.30666760498138646851810055640, −3.15631032968940887655490654387, −2.95289864226857084958278396510, −2.84508913463090600907026690123, −2.70302185799391594790098903518, −2.65084396659689621236777899250, −2.21959246135466579939384074822, −2.17068223303384374843705219824, −2.01573629991917285874962258723, −2.00410399304068148285485030774, −1.82595933138260372388140615981, −1.69524951540088176943988835088, −1.38737130034628442645727155079, −1.22386238742311741925763800420, −1.14431908871659870359626804471, −0.77468312068392539571631650601, −0.63274818063424262931442414244, −0.14411384948269391431524818713, 0.14411384948269391431524818713, 0.63274818063424262931442414244, 0.77468312068392539571631650601, 1.14431908871659870359626804471, 1.22386238742311741925763800420, 1.38737130034628442645727155079, 1.69524951540088176943988835088, 1.82595933138260372388140615981, 2.00410399304068148285485030774, 2.01573629991917285874962258723, 2.17068223303384374843705219824, 2.21959246135466579939384074822, 2.65084396659689621236777899250, 2.70302185799391594790098903518, 2.84508913463090600907026690123, 2.95289864226857084958278396510, 3.15631032968940887655490654387, 3.30666760498138646851810055640, 3.34598790844061005218052725199, 3.59103740701272334135111319919, 3.59456103539812716258165621470, 3.81277482729393081722216660919, 3.89481167934856389867900410432, 3.95458978231539740410451644877, 4.20803664220089564087435087609

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.