Properties

Label 8-1134e4-1.1-c1e4-0-15
Degree $8$
Conductor $1.654\times 10^{12}$
Sign $1$
Analytic cond. $6722.96$
Root an. cond. $3.00915$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4-s − 10·7-s − 6·13-s − 2·25-s − 10·28-s + 18·31-s − 8·37-s + 22·43-s + 61·49-s − 6·52-s + 48·61-s − 64-s + 14·67-s − 16·79-s + 60·91-s + 24·97-s − 2·100-s − 30·103-s + 16·109-s + 14·121-s + 18·124-s + 127-s + 131-s + 137-s + 139-s − 8·148-s + 149-s + ⋯
L(s)  = 1  + 1/2·4-s − 3.77·7-s − 1.66·13-s − 2/5·25-s − 1.88·28-s + 3.23·31-s − 1.31·37-s + 3.35·43-s + 61/7·49-s − 0.832·52-s + 6.14·61-s − 1/8·64-s + 1.71·67-s − 1.80·79-s + 6.28·91-s + 2.43·97-s − 1/5·100-s − 2.95·103-s + 1.53·109-s + 1.27·121-s + 1.61·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 0.657·148-s + 0.0819·149-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{16} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{16} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 3^{16} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(6722.96\)
Root analytic conductor: \(3.00915\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 3^{16} \cdot 7^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(2.067271434\)
\(L(\frac12)\) \(\approx\) \(2.067271434\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2^2$ \( 1 - T^{2} + T^{4} \)
3 \( 1 \)
7$C_2$ \( ( 1 + 5 T + p T^{2} )^{2} \)
good5$C_2^3$ \( 1 + 2 T^{2} - 21 T^{4} + 2 p^{2} T^{6} + p^{4} T^{8} \)
11$C_2^3$ \( 1 - 14 T^{2} + 75 T^{4} - 14 p^{2} T^{6} + p^{4} T^{8} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )^{2}( 1 + 5 T + p T^{2} )^{2} \)
17$C_2^2$ \( ( 1 + 31 T^{2} + p^{2} T^{4} )^{2} \)
19$C_2^2$ \( ( 1 + 10 T^{2} + p^{2} T^{4} )^{2} \)
23$C_2^3$ \( 1 + 37 T^{2} + 840 T^{4} + 37 p^{2} T^{6} + p^{4} T^{8} \)
29$C_2^3$ \( 1 + 49 T^{2} + 1560 T^{4} + 49 p^{2} T^{6} + p^{4} T^{8} \)
31$C_2^2$ \( ( 1 - 9 T + 58 T^{2} - 9 p T^{3} + p^{2} T^{4} )^{2} \)
37$C_2$ \( ( 1 + 2 T + p T^{2} )^{4} \)
41$C_2^3$ \( 1 - 34 T^{2} - 525 T^{4} - 34 p^{2} T^{6} + p^{4} T^{8} \)
43$C_2^2$ \( ( 1 - 11 T + 78 T^{2} - 11 p T^{3} + p^{2} T^{4} )^{2} \)
47$C_2^3$ \( 1 - 46 T^{2} - 93 T^{4} - 46 p^{2} T^{6} + p^{4} T^{8} \)
53$C_2^2$ \( ( 1 - 97 T^{2} + p^{2} T^{4} )^{2} \)
59$C_2^3$ \( 1 - 43 T^{2} - 1632 T^{4} - 43 p^{2} T^{6} + p^{4} T^{8} \)
61$C_2^2$ \( ( 1 - 24 T + 253 T^{2} - 24 p T^{3} + p^{2} T^{4} )^{2} \)
67$C_2^2$ \( ( 1 - 7 T - 18 T^{2} - 7 p T^{3} + p^{2} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 - 133 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2^2$ \( ( 1 - 98 T^{2} + p^{2} T^{4} )^{2} \)
79$C_2^2$ \( ( 1 + 8 T - 15 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \)
83$C_2^3$ \( 1 - 154 T^{2} + 16827 T^{4} - 154 p^{2} T^{6} + p^{4} T^{8} \)
89$C_2^2$ \( ( 1 + 151 T^{2} + p^{2} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 - 12 T + 145 T^{2} - 12 p T^{3} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.84349754291025128298870157174, −6.68057058448482890671993454285, −6.67447731204549851154565640790, −6.64954984758675550743020885651, −6.19787768422033970859441032396, −5.80143880805302056902254115420, −5.75860688016330003624815282353, −5.57564867812986301531900882769, −5.47326716760131007573977296515, −5.04345516014552287439721530379, −4.57222185740111262567021036026, −4.46711590680808137196645100373, −4.22272551254325117153989942672, −3.85896870589754521225085252293, −3.75841836771058362514566126829, −3.42770597324321728871097104756, −2.99669529227892468521443642487, −2.95951665091381060431140018916, −2.77489431743503757169074812847, −2.33818536093999725187696294033, −2.12709260732711027798047961142, −2.09648493921121790217228276497, −0.866466918777364631281491154705, −0.70937677937849112180812066906, −0.52232413925073647578044356674, 0.52232413925073647578044356674, 0.70937677937849112180812066906, 0.866466918777364631281491154705, 2.09648493921121790217228276497, 2.12709260732711027798047961142, 2.33818536093999725187696294033, 2.77489431743503757169074812847, 2.95951665091381060431140018916, 2.99669529227892468521443642487, 3.42770597324321728871097104756, 3.75841836771058362514566126829, 3.85896870589754521225085252293, 4.22272551254325117153989942672, 4.46711590680808137196645100373, 4.57222185740111262567021036026, 5.04345516014552287439721530379, 5.47326716760131007573977296515, 5.57564867812986301531900882769, 5.75860688016330003624815282353, 5.80143880805302056902254115420, 6.19787768422033970859441032396, 6.64954984758675550743020885651, 6.67447731204549851154565640790, 6.68057058448482890671993454285, 6.84349754291025128298870157174

Graph of the $Z$-function along the critical line