Properties

Label 4-1134e2-1.1-c1e2-0-23
Degree $4$
Conductor $1285956$
Sign $1$
Analytic cond. $81.9936$
Root an. cond. $3.00915$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 6·5-s + 5·7-s − 8-s − 6·10-s + 4·13-s + 5·14-s − 16-s + 6·17-s + 4·19-s − 12·23-s + 17·25-s + 4·26-s − 3·29-s − 8·31-s + 6·34-s − 30·35-s − 8·37-s + 4·38-s + 6·40-s − 6·41-s − 8·43-s − 12·46-s + 6·47-s + 18·49-s + 17·50-s + 9·53-s + ⋯
L(s)  = 1  + 0.707·2-s − 2.68·5-s + 1.88·7-s − 0.353·8-s − 1.89·10-s + 1.10·13-s + 1.33·14-s − 1/4·16-s + 1.45·17-s + 0.917·19-s − 2.50·23-s + 17/5·25-s + 0.784·26-s − 0.557·29-s − 1.43·31-s + 1.02·34-s − 5.07·35-s − 1.31·37-s + 0.648·38-s + 0.948·40-s − 0.937·41-s − 1.21·43-s − 1.76·46-s + 0.875·47-s + 18/7·49-s + 2.40·50-s + 1.23·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1285956 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1285956 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1285956\)    =    \(2^{2} \cdot 3^{8} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(81.9936\)
Root analytic conductor: \(3.00915\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1285956,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.678637509\)
\(L(\frac12)\) \(\approx\) \(1.678637509\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 - T + T^{2} \)
3 \( 1 \)
7$C_2$ \( 1 - 5 T + p T^{2} \)
good5$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2^2$ \( 1 - 4 T + 3 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
17$C_2^2$ \( 1 - 6 T + 19 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 4 T - 3 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
23$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
29$C_2^2$ \( 1 + 3 T - 20 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
31$C_2^2$ \( 1 + 8 T + 33 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
37$C_2^2$ \( 1 + 8 T + 27 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
41$C_2^2$ \( 1 + 6 T - 5 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
43$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 13 T + p T^{2} ) \)
47$C_2^2$ \( 1 - 6 T - 11 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 9 T + 28 T^{2} - 9 p T^{3} + p^{2} T^{4} \)
59$C_2^2$ \( 1 + 3 T - 50 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
61$C_2^2$ \( 1 - 10 T + 39 T^{2} - 10 p T^{3} + p^{2} T^{4} \)
67$C_2^2$ \( 1 - 10 T + 33 T^{2} - 10 p T^{3} + p^{2} T^{4} \)
71$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 17 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
79$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 13 T + p T^{2} ) \)
83$C_2^2$ \( 1 + 12 T + 61 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
89$C_2^2$ \( 1 - 6 T - 53 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
97$C_2^2$ \( 1 - 10 T + 3 T^{2} - 10 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.24474279859748350997775765370, −9.690847473478284191596286237155, −8.850965196213704117003188207972, −8.521086023789416090339400667213, −8.363720281403252582957515206841, −7.937428228047051312992757881004, −7.58669821364558233895931740878, −7.30646063046583060165180985034, −6.99262262871431262151687457843, −5.90351526504624489081906013988, −5.75634757857344306268088997862, −5.17280300791767053243512504585, −4.82229648817581861426271714697, −4.09507597795701589724998820085, −3.99682078638867322083682609692, −3.44831225174260494937688310190, −3.39567322456368141208455757504, −2.08033819687691849851095425972, −1.50956903677584336550849504003, −0.53750337517195478273435520502, 0.53750337517195478273435520502, 1.50956903677584336550849504003, 2.08033819687691849851095425972, 3.39567322456368141208455757504, 3.44831225174260494937688310190, 3.99682078638867322083682609692, 4.09507597795701589724998820085, 4.82229648817581861426271714697, 5.17280300791767053243512504585, 5.75634757857344306268088997862, 5.90351526504624489081906013988, 6.99262262871431262151687457843, 7.30646063046583060165180985034, 7.58669821364558233895931740878, 7.937428228047051312992757881004, 8.363720281403252582957515206841, 8.521086023789416090339400667213, 8.850965196213704117003188207972, 9.690847473478284191596286237155, 10.24474279859748350997775765370

Graph of the $Z$-function along the critical line