| L(s) = 1 | + (0.5 + 0.866i)2-s + (−0.499 + 0.866i)4-s − 3·5-s + (−2 − 1.73i)7-s − 0.999·8-s + (−1.5 − 2.59i)10-s + 3·11-s + (−1 − 1.73i)13-s + (0.499 − 2.59i)14-s + (−0.5 − 0.866i)16-s + (3 + 5.19i)17-s + (−1 + 1.73i)19-s + (1.49 − 2.59i)20-s + (1.5 + 2.59i)22-s + 6·23-s + ⋯ |
| L(s) = 1 | + (0.353 + 0.612i)2-s + (−0.249 + 0.433i)4-s − 1.34·5-s + (−0.755 − 0.654i)7-s − 0.353·8-s + (−0.474 − 0.821i)10-s + 0.904·11-s + (−0.277 − 0.480i)13-s + (0.133 − 0.694i)14-s + (−0.125 − 0.216i)16-s + (0.727 + 1.26i)17-s + (−0.229 + 0.397i)19-s + (0.335 − 0.580i)20-s + (0.319 + 0.553i)22-s + 1.25·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1134 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.975 - 0.220i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1134 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.975 - 0.220i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.300254646\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.300254646\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.5 - 0.866i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (2 + 1.73i)T \) |
| good | 5 | \( 1 + 3T + 5T^{2} \) |
| 11 | \( 1 - 3T + 11T^{2} \) |
| 13 | \( 1 + (1 + 1.73i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-3 - 5.19i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (1 - 1.73i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 - 6T + 23T^{2} \) |
| 29 | \( 1 + (-4.5 + 7.79i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-3.5 + 6.06i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-5 + 8.66i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-2 + 3.46i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-6 - 10.3i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (1.5 + 2.59i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (1.5 - 2.59i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-2 - 3.46i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (1 - 1.73i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 71T^{2} \) |
| 73 | \( 1 + (1 + 1.73i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (2.5 + 4.33i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-4.5 + 7.79i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (3 - 5.19i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-6.5 + 11.2i)T + (-48.5 - 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.787139695390997440403493160242, −8.851647777639541928662659320889, −7.85397161044719272567085924444, −7.52661575484205842675603170925, −6.48825635455924513510815005127, −5.81213056561974991646725969432, −4.24487051295829938467574555157, −4.02488429265996079437928500239, −2.96768067327223288966911017286, −0.70598724177145393018985165130,
0.975484638579017762636638776897, 2.82458963834384751437891636840, 3.38669133562200595296484428438, 4.49991948914571717453111671184, 5.21324057022628905359156653046, 6.63261219628726278398161055772, 7.06952485579367031972517453728, 8.353231050658178692623954606532, 9.070680312802161235305342108040, 9.726054653558983734764329727628