Properties

Label 2-1120-1.1-c3-0-5
Degree $2$
Conductor $1120$
Sign $1$
Analytic cond. $66.0821$
Root an. cond. $8.12909$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.17·3-s − 5·5-s + 7·7-s − 25.6·9-s − 52.0·11-s − 63.8·13-s + 5.89·15-s + 51.2·17-s − 56.1·19-s − 8.25·21-s + 97.1·23-s + 25·25-s + 62.0·27-s − 300.·29-s − 181.·31-s + 61.3·33-s − 35·35-s + 95.8·37-s + 75.2·39-s + 247.·41-s + 414.·43-s + 128.·45-s + 24.1·47-s + 49·49-s − 60.4·51-s + 399.·53-s + 260.·55-s + ⋯
L(s)  = 1  − 0.226·3-s − 0.447·5-s + 0.377·7-s − 0.948·9-s − 1.42·11-s − 1.36·13-s + 0.101·15-s + 0.730·17-s − 0.677·19-s − 0.0857·21-s + 0.880·23-s + 0.200·25-s + 0.442·27-s − 1.92·29-s − 1.04·31-s + 0.323·33-s − 0.169·35-s + 0.425·37-s + 0.308·39-s + 0.941·41-s + 1.47·43-s + 0.424·45-s + 0.0748·47-s + 0.142·49-s − 0.165·51-s + 1.03·53-s + 0.638·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1120 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1120\)    =    \(2^{5} \cdot 5 \cdot 7\)
Sign: $1$
Analytic conductor: \(66.0821\)
Root analytic conductor: \(8.12909\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1120,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.7793979968\)
\(L(\frac12)\) \(\approx\) \(0.7793979968\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + 5T \)
7 \( 1 - 7T \)
good3 \( 1 + 1.17T + 27T^{2} \)
11 \( 1 + 52.0T + 1.33e3T^{2} \)
13 \( 1 + 63.8T + 2.19e3T^{2} \)
17 \( 1 - 51.2T + 4.91e3T^{2} \)
19 \( 1 + 56.1T + 6.85e3T^{2} \)
23 \( 1 - 97.1T + 1.21e4T^{2} \)
29 \( 1 + 300.T + 2.43e4T^{2} \)
31 \( 1 + 181.T + 2.97e4T^{2} \)
37 \( 1 - 95.8T + 5.06e4T^{2} \)
41 \( 1 - 247.T + 6.89e4T^{2} \)
43 \( 1 - 414.T + 7.95e4T^{2} \)
47 \( 1 - 24.1T + 1.03e5T^{2} \)
53 \( 1 - 399.T + 1.48e5T^{2} \)
59 \( 1 + 353.T + 2.05e5T^{2} \)
61 \( 1 - 586.T + 2.26e5T^{2} \)
67 \( 1 + 413.T + 3.00e5T^{2} \)
71 \( 1 - 36.8T + 3.57e5T^{2} \)
73 \( 1 + 472.T + 3.89e5T^{2} \)
79 \( 1 + 1.10e3T + 4.93e5T^{2} \)
83 \( 1 + 267.T + 5.71e5T^{2} \)
89 \( 1 + 336.T + 7.04e5T^{2} \)
97 \( 1 - 375.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.409243020241471684020993412446, −8.596362144164793878384694694715, −7.57661669815135322186250658208, −7.35743606272283007402295819854, −5.74892286692264948989389715902, −5.33057422099453134926627830931, −4.32856104167790956759299976728, −3.03735206779802659597421475108, −2.21809155055854438924007355552, −0.43657583895959600688413584406, 0.43657583895959600688413584406, 2.21809155055854438924007355552, 3.03735206779802659597421475108, 4.32856104167790956759299976728, 5.33057422099453134926627830931, 5.74892286692264948989389715902, 7.35743606272283007402295819854, 7.57661669815135322186250658208, 8.596362144164793878384694694715, 9.409243020241471684020993412446

Graph of the $Z$-function along the critical line