| L(s) = 1 | + (11.5 − 20.0i)3-s + (−75.7 + 43.7i)5-s + (90.8 + 92.4i)7-s + (−145. − 252. i)9-s + (350. + 202. i)11-s + 640. i·13-s + 2.02e3i·15-s + (1.28e3 + 742. i)17-s + (−699. − 1.21e3i)19-s + (2.90e3 − 750. i)21-s + (1.03e3 − 600. i)23-s + (2.26e3 − 3.92e3i)25-s − 1.12e3·27-s − 1.96e3·29-s + (−406. + 704. i)31-s + ⋯ |
| L(s) = 1 | + (0.741 − 1.28i)3-s + (−1.35 + 0.782i)5-s + (0.700 + 0.713i)7-s + (−0.600 − 1.03i)9-s + (0.874 + 0.504i)11-s + 1.05i·13-s + 2.32i·15-s + (1.07 + 0.623i)17-s + (−0.444 − 0.770i)19-s + (1.43 − 0.371i)21-s + (0.409 − 0.236i)23-s + (0.725 − 1.25i)25-s − 0.297·27-s − 0.434·29-s + (−0.0760 + 0.131i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.928 - 0.370i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.928 - 0.370i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(3)\) |
\(\approx\) |
\(1.989064487\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.989064487\) |
| \(L(\frac{7}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 7 | \( 1 + (-90.8 - 92.4i)T \) |
| good | 3 | \( 1 + (-11.5 + 20.0i)T + (-121.5 - 210. i)T^{2} \) |
| 5 | \( 1 + (75.7 - 43.7i)T + (1.56e3 - 2.70e3i)T^{2} \) |
| 11 | \( 1 + (-350. - 202. i)T + (8.05e4 + 1.39e5i)T^{2} \) |
| 13 | \( 1 - 640. iT - 3.71e5T^{2} \) |
| 17 | \( 1 + (-1.28e3 - 742. i)T + (7.09e5 + 1.22e6i)T^{2} \) |
| 19 | \( 1 + (699. + 1.21e3i)T + (-1.23e6 + 2.14e6i)T^{2} \) |
| 23 | \( 1 + (-1.03e3 + 600. i)T + (3.21e6 - 5.57e6i)T^{2} \) |
| 29 | \( 1 + 1.96e3T + 2.05e7T^{2} \) |
| 31 | \( 1 + (406. - 704. i)T + (-1.43e7 - 2.47e7i)T^{2} \) |
| 37 | \( 1 + (-6.95e3 - 1.20e4i)T + (-3.46e7 + 6.00e7i)T^{2} \) |
| 41 | \( 1 + 1.70e4iT - 1.15e8T^{2} \) |
| 43 | \( 1 - 1.92e4iT - 1.47e8T^{2} \) |
| 47 | \( 1 + (-1.13e4 - 1.96e4i)T + (-1.14e8 + 1.98e8i)T^{2} \) |
| 53 | \( 1 + (-8.00e3 + 1.38e4i)T + (-2.09e8 - 3.62e8i)T^{2} \) |
| 59 | \( 1 + (1.50e4 - 2.60e4i)T + (-3.57e8 - 6.19e8i)T^{2} \) |
| 61 | \( 1 + (3.78e4 - 2.18e4i)T + (4.22e8 - 7.31e8i)T^{2} \) |
| 67 | \( 1 + (-9.18e3 - 5.30e3i)T + (6.75e8 + 1.16e9i)T^{2} \) |
| 71 | \( 1 + 5.74e4iT - 1.80e9T^{2} \) |
| 73 | \( 1 + (-5.63e4 - 3.25e4i)T + (1.03e9 + 1.79e9i)T^{2} \) |
| 79 | \( 1 + (-1.59e4 + 9.23e3i)T + (1.53e9 - 2.66e9i)T^{2} \) |
| 83 | \( 1 + 1.70e4T + 3.93e9T^{2} \) |
| 89 | \( 1 + (4.08e4 - 2.35e4i)T + (2.79e9 - 4.83e9i)T^{2} \) |
| 97 | \( 1 - 5.28e4iT - 8.58e9T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.50178513282569998993932209909, −11.91442602647492970225913178235, −11.05058122037685467742415976169, −9.132602193472384448337913030171, −8.136157042934282417220558647330, −7.35691580750054007029682445669, −6.46456442488045155564131657253, −4.27683521179905667120144867876, −2.80730807588349200888627180042, −1.44068121003627323545134861571,
0.77997356216605802500549090845, 3.48377573770599696260004911787, 4.09630930424191846927686100039, 5.24895487697946186063447349736, 7.61620267512597244006070192941, 8.301012449839583601374649681200, 9.300256013541440034726379508836, 10.49336178848613833640792804431, 11.43336526955170698467917112686, 12.49936441480513179120993165213