Properties

Degree $2$
Conductor $112$
Sign $0.895 + 0.444i$
Motivic weight $1$
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.5 − 0.866i)3-s + (1.5 + 0.866i)5-s + (2 − 1.73i)7-s + (1 − 1.73i)9-s + (−1.5 + 0.866i)11-s − 1.73i·15-s + (−4.5 + 2.59i)17-s + (−3.5 + 6.06i)19-s + (−2.5 − 0.866i)21-s + (7.5 + 4.33i)23-s + (−1 − 1.73i)25-s − 5·27-s − 6·29-s + (−2.5 − 4.33i)31-s + (1.5 + 0.866i)33-s + ⋯
L(s)  = 1  + (−0.288 − 0.499i)3-s + (0.670 + 0.387i)5-s + (0.755 − 0.654i)7-s + (0.333 − 0.577i)9-s + (−0.452 + 0.261i)11-s − 0.447i·15-s + (−1.09 + 0.630i)17-s + (−0.802 + 1.39i)19-s + (−0.545 − 0.188i)21-s + (1.56 + 0.902i)23-s + (−0.200 − 0.346i)25-s − 0.962·27-s − 1.11·29-s + (−0.449 − 0.777i)31-s + (0.261 + 0.150i)33-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.895 + 0.444i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.895 + 0.444i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(112\)    =    \(2^{4} \cdot 7\)
Sign: $0.895 + 0.444i$
Motivic weight: \(1\)
Character: $\chi_{112} (47, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 112,\ (\ :1/2),\ 0.895 + 0.444i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.05190 - 0.246421i\)
\(L(\frac12)\) \(\approx\) \(1.05190 - 0.246421i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + (-2 + 1.73i)T \)
good3 \( 1 + (0.5 + 0.866i)T + (-1.5 + 2.59i)T^{2} \)
5 \( 1 + (-1.5 - 0.866i)T + (2.5 + 4.33i)T^{2} \)
11 \( 1 + (1.5 - 0.866i)T + (5.5 - 9.52i)T^{2} \)
13 \( 1 - 13T^{2} \)
17 \( 1 + (4.5 - 2.59i)T + (8.5 - 14.7i)T^{2} \)
19 \( 1 + (3.5 - 6.06i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (-7.5 - 4.33i)T + (11.5 + 19.9i)T^{2} \)
29 \( 1 + 6T + 29T^{2} \)
31 \( 1 + (2.5 + 4.33i)T + (-15.5 + 26.8i)T^{2} \)
37 \( 1 + (-2.5 + 4.33i)T + (-18.5 - 32.0i)T^{2} \)
41 \( 1 - 6.92iT - 41T^{2} \)
43 \( 1 + 3.46iT - 43T^{2} \)
47 \( 1 + (1.5 - 2.59i)T + (-23.5 - 40.7i)T^{2} \)
53 \( 1 + (-4.5 - 7.79i)T + (-26.5 + 45.8i)T^{2} \)
59 \( 1 + (4.5 + 7.79i)T + (-29.5 + 51.0i)T^{2} \)
61 \( 1 + (-7.5 - 4.33i)T + (30.5 + 52.8i)T^{2} \)
67 \( 1 + (-4.5 + 2.59i)T + (33.5 - 58.0i)T^{2} \)
71 \( 1 - 3.46iT - 71T^{2} \)
73 \( 1 + (-1.5 + 0.866i)T + (36.5 - 63.2i)T^{2} \)
79 \( 1 + (4.5 + 2.59i)T + (39.5 + 68.4i)T^{2} \)
83 \( 1 - 12T + 83T^{2} \)
89 \( 1 + (10.5 + 6.06i)T + (44.5 + 77.0i)T^{2} \)
97 \( 1 - 6.92iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.36435495900951915893436555353, −12.74792982753816727685264134953, −11.35668188794049704482501219594, −10.53881676871788679563498254985, −9.391354172952845164126764313371, −7.894237687879887047672717842079, −6.85205033185553107187980022870, −5.74024338411001776721315514030, −4.07424526339612746354847297653, −1.82698880999477658675413412774, 2.29797226428550356109097376842, 4.71525060893812083005003990248, 5.35765362414082962117536760423, 6.99159975970254225762761686382, 8.572229715794336102069115036051, 9.343825111569200105677304811287, 10.77906089588489236258136790061, 11.29943998937957979654265389195, 12.90991557214120478155665202877, 13.48390054678584073455726518985

Graph of the $Z$-function along the critical line