Properties

Label 8-1110e4-1.1-c1e4-0-1
Degree $8$
Conductor $1.518\times 10^{12}$
Sign $1$
Analytic cond. $6171.63$
Root an. cond. $2.97714$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·7-s + 2·9-s + 4·13-s − 16-s − 12·19-s − 28·31-s − 4·37-s + 28·43-s + 12·49-s − 36·61-s + 16·63-s + 12·79-s − 5·81-s + 32·91-s + 28·97-s − 20·103-s − 12·109-s − 8·112-s + 8·117-s − 44·121-s + 127-s + 131-s − 96·133-s + 137-s + 139-s − 2·144-s + 149-s + ⋯
L(s)  = 1  + 3.02·7-s + 2/3·9-s + 1.10·13-s − 1/4·16-s − 2.75·19-s − 5.02·31-s − 0.657·37-s + 4.26·43-s + 12/7·49-s − 4.60·61-s + 2.01·63-s + 1.35·79-s − 5/9·81-s + 3.35·91-s + 2.84·97-s − 1.97·103-s − 1.14·109-s − 0.755·112-s + 0.739·117-s − 4·121-s + 0.0887·127-s + 0.0873·131-s − 8.32·133-s + 0.0854·137-s + 0.0848·139-s − 1/6·144-s + 0.0819·149-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 5^{4} \cdot 37^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 5^{4} \cdot 37^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 3^{4} \cdot 5^{4} \cdot 37^{4}\)
Sign: $1$
Analytic conductor: \(6171.63\)
Root analytic conductor: \(2.97714\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 3^{4} \cdot 5^{4} \cdot 37^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.7133169852\)
\(L(\frac12)\) \(\approx\) \(0.7133169852\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2^2$ \( 1 + T^{4} \)
3$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
5$C_2^2$ \( 1 + T^{4} \)
37$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
good7$C_2$ \( ( 1 - 2 T + p T^{2} )^{4} \)
11$C_2$ \( ( 1 + p T^{2} )^{4} \)
13$C_2$ \( ( 1 - 6 T + p T^{2} )^{2}( 1 + 4 T + p T^{2} )^{2} \)
17$C_2^2$$\times$$C_2^2$ \( ( 1 - 8 T + 32 T^{2} - 8 p T^{3} + p^{2} T^{4} )( 1 + 8 T + 32 T^{2} + 8 p T^{3} + p^{2} T^{4} ) \)
19$C_2^2$ \( ( 1 + 6 T + 18 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
23$C_2^3$ \( 1 - 158 T^{4} + p^{4} T^{8} \)
29$C_2^3$ \( 1 - 1198 T^{4} + p^{4} T^{8} \)
31$C_2^2$ \( ( 1 + 14 T + 98 T^{2} + 14 p T^{3} + p^{2} T^{4} )^{2} \)
41$C_2^2$ \( ( 1 + 50 T^{2} + p^{2} T^{4} )^{2} \)
43$C_2^2$ \( ( 1 - 14 T + 98 T^{2} - 14 p T^{3} + p^{2} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 - 86 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 - 74 T^{2} + p^{2} T^{4} )^{2} \)
59$C_2^3$ \( 1 - 4046 T^{4} + p^{4} T^{8} \)
61$C_2^2$ \( ( 1 + 18 T + 162 T^{2} + 18 p T^{3} + p^{2} T^{4} )^{2} \)
67$C_2^2$ \( ( 1 - 118 T^{2} + p^{2} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 - 134 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2$ \( ( 1 - 16 T + p T^{2} )^{2}( 1 + 16 T + p T^{2} )^{2} \)
79$C_2^2$ \( ( 1 - 6 T + 18 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \)
83$C_2$ \( ( 1 - 18 T + p T^{2} )^{2}( 1 + 18 T + p T^{2} )^{2} \)
89$C_2^3$ \( 1 + 14434 T^{4} + p^{4} T^{8} \)
97$C_2^2$ \( ( 1 - 14 T + 98 T^{2} - 14 p T^{3} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.14135111731970326643039348502, −6.86657709383484072232327963276, −6.58754683602131486024868992050, −6.20775614029697427791815305532, −6.19995369563461895392941089814, −6.02214866294072957680886457212, −5.55620948851054911034164030240, −5.47929088624892800989972403653, −5.26837913012982876458972703885, −4.81085766092619711605133367371, −4.69407833192904972852518071414, −4.68132313320446542678656033379, −4.32228864671638402418084076242, −4.00067505904214859449536790195, −3.72602480215257132495847754023, −3.61885296998006644548725224888, −3.60068685911881274103624927916, −2.55415962484326028358638140084, −2.53304099209962704796509945757, −2.42410431095304998578483844774, −1.69605837434562825066105169149, −1.65005308206818863920438839104, −1.47071880303995430767020659839, −1.32688143756791562871071688207, −0.15665999798825613374994193693, 0.15665999798825613374994193693, 1.32688143756791562871071688207, 1.47071880303995430767020659839, 1.65005308206818863920438839104, 1.69605837434562825066105169149, 2.42410431095304998578483844774, 2.53304099209962704796509945757, 2.55415962484326028358638140084, 3.60068685911881274103624927916, 3.61885296998006644548725224888, 3.72602480215257132495847754023, 4.00067505904214859449536790195, 4.32228864671638402418084076242, 4.68132313320446542678656033379, 4.69407833192904972852518071414, 4.81085766092619711605133367371, 5.26837913012982876458972703885, 5.47929088624892800989972403653, 5.55620948851054911034164030240, 6.02214866294072957680886457212, 6.19995369563461895392941089814, 6.20775614029697427791815305532, 6.58754683602131486024868992050, 6.86657709383484072232327963276, 7.14135111731970326643039348502

Graph of the $Z$-function along the critical line