Properties

Label 8-1110e4-1.1-c1e4-0-14
Degree $8$
Conductor $1.518\times 10^{12}$
Sign $1$
Analytic cond. $6171.63$
Root an. cond. $2.97714$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 2·3-s + 4-s + 2·5-s − 4·6-s − 7-s − 2·8-s + 9-s + 4·10-s + 6·11-s − 2·12-s + 2·13-s − 2·14-s − 4·15-s − 4·16-s + 12·17-s + 2·18-s − 7·19-s + 2·20-s + 2·21-s + 12·22-s + 18·23-s + 4·24-s + 25-s + 4·26-s + 2·27-s − 28-s + ⋯
L(s)  = 1  + 1.41·2-s − 1.15·3-s + 1/2·4-s + 0.894·5-s − 1.63·6-s − 0.377·7-s − 0.707·8-s + 1/3·9-s + 1.26·10-s + 1.80·11-s − 0.577·12-s + 0.554·13-s − 0.534·14-s − 1.03·15-s − 16-s + 2.91·17-s + 0.471·18-s − 1.60·19-s + 0.447·20-s + 0.436·21-s + 2.55·22-s + 3.75·23-s + 0.816·24-s + 1/5·25-s + 0.784·26-s + 0.384·27-s − 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 5^{4} \cdot 37^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 5^{4} \cdot 37^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 3^{4} \cdot 5^{4} \cdot 37^{4}\)
Sign: $1$
Analytic conductor: \(6171.63\)
Root analytic conductor: \(2.97714\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 3^{4} \cdot 5^{4} \cdot 37^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(6.763625681\)
\(L(\frac12)\) \(\approx\) \(6.763625681\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 - T + T^{2} )^{2} \)
3$C_2$ \( ( 1 + T + T^{2} )^{2} \)
5$C_2$ \( ( 1 - T + T^{2} )^{2} \)
37$C_2^2$ \( 1 - 7 T + 12 T^{2} - 7 p T^{3} + p^{2} T^{4} \)
good7$D_4\times C_2$ \( 1 + T - 5 T^{2} - 8 T^{3} - 20 T^{4} - 8 p T^{5} - 5 p^{2} T^{6} + p^{3} T^{7} + p^{4} T^{8} \)
11$D_{4}$ \( ( 1 - 3 T + 16 T^{2} - 3 p T^{3} + p^{2} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 - T - 12 T^{2} - p T^{3} + p^{2} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 - 6 T + 19 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \)
19$D_4\times C_2$ \( 1 + 7 T + 7 T^{2} + 28 T^{3} + 472 T^{4} + 28 p T^{5} + 7 p^{2} T^{6} + 7 p^{3} T^{7} + p^{4} T^{8} \)
23$C_2^2$ \( ( 1 - 9 T + 58 T^{2} - 9 p T^{3} + p^{2} T^{4} )^{2} \)
29$D_{4}$ \( ( 1 + 6 T + 34 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
31$D_{4}$ \( ( 1 - T - 12 T^{2} - p T^{3} + p^{2} T^{4} )^{2} \)
41$D_4\times C_2$ \( 1 + 6 T - 22 T^{2} - 144 T^{3} + 207 T^{4} - 144 p T^{5} - 22 p^{2} T^{6} + 6 p^{3} T^{7} + p^{4} T^{8} \)
43$D_{4}$ \( ( 1 + 5 T + 18 T^{2} + 5 p T^{3} + p^{2} T^{4} )^{2} \)
47$D_{4}$ \( ( 1 - 9 T + 106 T^{2} - 9 p T^{3} + p^{2} T^{4} )^{2} \)
53$D_4\times C_2$ \( 1 + 6 T - 46 T^{2} - 144 T^{3} + 2007 T^{4} - 144 p T^{5} - 46 p^{2} T^{6} + 6 p^{3} T^{7} + p^{4} T^{8} \)
59$D_4\times C_2$ \( 1 - 3 T - 103 T^{2} + 18 T^{3} + 8532 T^{4} + 18 p T^{5} - 103 p^{2} T^{6} - 3 p^{3} T^{7} + p^{4} T^{8} \)
61$C_2^2$ \( ( 1 + 2 T - 57 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
67$D_4\times C_2$ \( 1 + 13 T + T^{2} + 442 T^{3} + 12412 T^{4} + 442 p T^{5} + p^{2} T^{6} + 13 p^{3} T^{7} + p^{4} T^{8} \)
71$D_4\times C_2$ \( 1 + 6 T - 82 T^{2} - 144 T^{3} + 6327 T^{4} - 144 p T^{5} - 82 p^{2} T^{6} + 6 p^{3} T^{7} + p^{4} T^{8} \)
73$D_{4}$ \( ( 1 + 5 T + 78 T^{2} + 5 p T^{3} + p^{2} T^{4} )^{2} \)
79$D_4\times C_2$ \( 1 - 17 T + 133 T^{2} + 34 T^{3} - 4736 T^{4} + 34 p T^{5} + 133 p^{2} T^{6} - 17 p^{3} T^{7} + p^{4} T^{8} \)
83$C_2^3$ \( 1 - 34 T^{2} - 5733 T^{4} - 34 p^{2} T^{6} + p^{4} T^{8} \)
89$D_4\times C_2$ \( 1 - 15 T + 65 T^{2} + 270 T^{3} - 2346 T^{4} + 270 p T^{5} + 65 p^{2} T^{6} - 15 p^{3} T^{7} + p^{4} T^{8} \)
97$D_{4}$ \( ( 1 - 19 T + 210 T^{2} - 19 p T^{3} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.96726428447407423518085692492, −6.52979496259404026868994716283, −6.46769858193064993486654250708, −6.24635682632801241006633661096, −6.17545599783337158385751155978, −5.86068786626288978992305006018, −5.65927790242469358274491317523, −5.44201385356941261467740275265, −5.29276472123007053112734641090, −5.08094175018132647945746660643, −4.80616733257135348706992170716, −4.70285079084255882121257682642, −4.12315414765356406727162364589, −4.02151685281758240390219948833, −3.97276363144708872972146069774, −3.50525203871378483555146796037, −3.20238884400745860649102043135, −3.06807475985732487721816189469, −2.98690837313972318832557579844, −2.44037291519821082605602516359, −1.84464081723413483553197368337, −1.79398152111434136095456890858, −1.09712061038837054007181765020, −1.06007863371185985307460205383, −0.55822790667070444982146460398, 0.55822790667070444982146460398, 1.06007863371185985307460205383, 1.09712061038837054007181765020, 1.79398152111434136095456890858, 1.84464081723413483553197368337, 2.44037291519821082605602516359, 2.98690837313972318832557579844, 3.06807475985732487721816189469, 3.20238884400745860649102043135, 3.50525203871378483555146796037, 3.97276363144708872972146069774, 4.02151685281758240390219948833, 4.12315414765356406727162364589, 4.70285079084255882121257682642, 4.80616733257135348706992170716, 5.08094175018132647945746660643, 5.29276472123007053112734641090, 5.44201385356941261467740275265, 5.65927790242469358274491317523, 5.86068786626288978992305006018, 6.17545599783337158385751155978, 6.24635682632801241006633661096, 6.46769858193064993486654250708, 6.52979496259404026868994716283, 6.96726428447407423518085692492

Graph of the $Z$-function along the critical line