Properties

Label 6-1104e3-1.1-c5e3-0-1
Degree $6$
Conductor $1345572864$
Sign $1$
Analytic cond. $5.55122\times 10^{6}$
Root an. cond. $13.3065$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 27·3-s − 56·5-s + 114·7-s + 486·9-s + 376·11-s − 858·13-s + 1.51e3·15-s − 2.54e3·17-s + 2.84e3·19-s − 3.07e3·21-s − 1.58e3·23-s − 2.74e3·25-s − 7.29e3·27-s − 1.63e4·29-s + 1.47e4·31-s − 1.01e4·33-s − 6.38e3·35-s + 1.58e4·37-s + 2.31e4·39-s + 1.26e4·41-s − 3.15e3·43-s − 2.72e4·45-s − 2.99e4·47-s − 1.64e4·49-s + 6.87e4·51-s − 4.40e4·53-s − 2.10e4·55-s + ⋯
L(s)  = 1  − 1.73·3-s − 1.00·5-s + 0.879·7-s + 2·9-s + 0.936·11-s − 1.40·13-s + 1.73·15-s − 2.13·17-s + 1.80·19-s − 1.52·21-s − 0.625·23-s − 0.877·25-s − 1.92·27-s − 3.61·29-s + 2.75·31-s − 1.62·33-s − 0.880·35-s + 1.90·37-s + 2.43·39-s + 1.17·41-s − 0.260·43-s − 2.00·45-s − 1.97·47-s − 0.980·49-s + 3.70·51-s − 2.15·53-s − 0.938·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 3^{3} \cdot 23^{3}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(6-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 3^{3} \cdot 23^{3}\right)^{s/2} \, \Gamma_{\C}(s+5/2)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(6\)
Conductor: \(2^{12} \cdot 3^{3} \cdot 23^{3}\)
Sign: $1$
Analytic conductor: \(5.55122\times 10^{6}\)
Root analytic conductor: \(13.3065\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((6,\ 2^{12} \cdot 3^{3} \cdot 23^{3} ,\ ( \ : 5/2, 5/2, 5/2 ),\ 1 )\)

Particular Values

\(L(3)\) \(\approx\) \(1.412683661\)
\(L(\frac12)\) \(\approx\) \(1.412683661\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( ( 1 + p^{2} T )^{3} \)
23$C_1$ \( ( 1 + p^{2} T )^{3} \)
good5$S_4\times C_2$ \( 1 + 56 T + 5879 T^{2} + 154424 T^{3} + 5879 p^{5} T^{4} + 56 p^{10} T^{5} + p^{15} T^{6} \)
7$S_4\times C_2$ \( 1 - 114 T + 29473 T^{2} - 3883732 T^{3} + 29473 p^{5} T^{4} - 114 p^{10} T^{5} + p^{15} T^{6} \)
11$S_4\times C_2$ \( 1 - 376 T + 252481 T^{2} - 142251704 T^{3} + 252481 p^{5} T^{4} - 376 p^{10} T^{5} + p^{15} T^{6} \)
13$S_4\times C_2$ \( 1 + 66 p T + 673923 T^{2} + 268856412 T^{3} + 673923 p^{5} T^{4} + 66 p^{11} T^{5} + p^{15} T^{6} \)
17$S_4\times C_2$ \( 1 + 2548 T + 5764387 T^{2} + 7106478632 T^{3} + 5764387 p^{5} T^{4} + 2548 p^{10} T^{5} + p^{15} T^{6} \)
19$S_4\times C_2$ \( 1 - 2846 T + 487079 p T^{2} - 14089642340 T^{3} + 487079 p^{6} T^{4} - 2846 p^{10} T^{5} + p^{15} T^{6} \)
29$S_4\times C_2$ \( 1 + 16370 T + 143935155 T^{2} + 789370759340 T^{3} + 143935155 p^{5} T^{4} + 16370 p^{10} T^{5} + p^{15} T^{6} \)
31$S_4\times C_2$ \( 1 - 476 p T + 138580077 T^{2} - 861567646264 T^{3} + 138580077 p^{5} T^{4} - 476 p^{11} T^{5} + p^{15} T^{6} \)
37$S_4\times C_2$ \( 1 - 15874 T + 283329963 T^{2} - 2305001420148 T^{3} + 283329963 p^{5} T^{4} - 15874 p^{10} T^{5} + p^{15} T^{6} \)
41$S_4\times C_2$ \( 1 - 12606 T + 331997335 T^{2} - 2707384025828 T^{3} + 331997335 p^{5} T^{4} - 12606 p^{10} T^{5} + p^{15} T^{6} \)
43$S_4\times C_2$ \( 1 + 3154 T + 339001869 T^{2} + 517383556556 T^{3} + 339001869 p^{5} T^{4} + 3154 p^{10} T^{5} + p^{15} T^{6} \)
47$S_4\times C_2$ \( 1 + 29928 T + 824463709 T^{2} + 13203001936176 T^{3} + 824463709 p^{5} T^{4} + 29928 p^{10} T^{5} + p^{15} T^{6} \)
53$S_4\times C_2$ \( 1 + 44084 T + 710047655 T^{2} + 6683794054544 T^{3} + 710047655 p^{5} T^{4} + 44084 p^{10} T^{5} + p^{15} T^{6} \)
59$S_4\times C_2$ \( 1 - 29300 T + 1744914257 T^{2} - 37824050997176 T^{3} + 1744914257 p^{5} T^{4} - 29300 p^{10} T^{5} + p^{15} T^{6} \)
61$S_4\times C_2$ \( 1 - 54010 T + 3288997283 T^{2} - 91927672344788 T^{3} + 3288997283 p^{5} T^{4} - 54010 p^{10} T^{5} + p^{15} T^{6} \)
67$S_4\times C_2$ \( 1 + 43390 T + 1100710197 T^{2} - 11754561587628 T^{3} + 1100710197 p^{5} T^{4} + 43390 p^{10} T^{5} + p^{15} T^{6} \)
71$S_4\times C_2$ \( 1 + 23424 T + 4239683749 T^{2} + 58278976303616 T^{3} + 4239683749 p^{5} T^{4} + 23424 p^{10} T^{5} + p^{15} T^{6} \)
73$S_4\times C_2$ \( 1 + 91402 T + 5485513767 T^{2} + 259506540394092 T^{3} + 5485513767 p^{5} T^{4} + 91402 p^{10} T^{5} + p^{15} T^{6} \)
79$S_4\times C_2$ \( 1 - 49398 T + 5918352025 T^{2} - 210022241166364 T^{3} + 5918352025 p^{5} T^{4} - 49398 p^{10} T^{5} + p^{15} T^{6} \)
83$S_4\times C_2$ \( 1 - 103936 T + 5338515353 T^{2} - 124565773223896 T^{3} + 5338515353 p^{5} T^{4} - 103936 p^{10} T^{5} + p^{15} T^{6} \)
89$S_4\times C_2$ \( 1 - 96112 T + 15326136523 T^{2} - 970745006227616 T^{3} + 15326136523 p^{5} T^{4} - 96112 p^{10} T^{5} + p^{15} T^{6} \)
97$S_4\times C_2$ \( 1 + 135318 T + 21864400719 T^{2} + 2241137600844532 T^{3} + 21864400719 p^{5} T^{4} + 135318 p^{10} T^{5} + p^{15} T^{6} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.155780508294512096787089533567, −7.55048989378911556948159511763, −7.50279976997768361363030323145, −7.33013335444510881547836701361, −6.65732323933415876610543518610, −6.58303243157568296666509564246, −6.56739369619575275151812773313, −5.89914971619276617766446569131, −5.80607700379345855233860528665, −5.34728356545657878823304812281, −5.20093306216359464471033720484, −4.71862239829514296638613682037, −4.61711917622901085771339976858, −4.17947168033845633895659373356, −4.00075624164073641631254321216, −3.98433908224491395392204978632, −3.07980916118966027516888421171, −2.99895821356065109551796385191, −2.43246183019761534113611735159, −1.86775682483801940134749855614, −1.60305724514617324391202612185, −1.56329030299192855646615698978, −0.71626281863345919185195161957, −0.38656200442501889003190434393, −0.38207684130995514944966549318, 0.38207684130995514944966549318, 0.38656200442501889003190434393, 0.71626281863345919185195161957, 1.56329030299192855646615698978, 1.60305724514617324391202612185, 1.86775682483801940134749855614, 2.43246183019761534113611735159, 2.99895821356065109551796385191, 3.07980916118966027516888421171, 3.98433908224491395392204978632, 4.00075624164073641631254321216, 4.17947168033845633895659373356, 4.61711917622901085771339976858, 4.71862239829514296638613682037, 5.20093306216359464471033720484, 5.34728356545657878823304812281, 5.80607700379345855233860528665, 5.89914971619276617766446569131, 6.56739369619575275151812773313, 6.58303243157568296666509564246, 6.65732323933415876610543518610, 7.33013335444510881547836701361, 7.50279976997768361363030323145, 7.55048989378911556948159511763, 8.155780508294512096787089533567

Graph of the $Z$-function along the critical line