Properties

Label 2-1100-55.54-c2-0-1
Degree $2$
Conductor $1100$
Sign $0.0898 + 0.995i$
Analytic cond. $29.9728$
Root an. cond. $5.47474$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.69i·3-s − 7.54·7-s − 13.0·9-s + (5.78 + 9.35i)11-s + 0.829·13-s − 29.8·17-s + 36.2i·19-s − 35.4i·21-s − 29.7i·23-s − 18.9i·27-s − 10.0i·29-s + 34.6·31-s + (−43.9 + 27.1i)33-s − 61.9i·37-s + 3.89i·39-s + ⋯
L(s)  = 1  + 1.56i·3-s − 1.07·7-s − 1.44·9-s + (0.525 + 0.850i)11-s + 0.0637·13-s − 1.75·17-s + 1.90i·19-s − 1.68i·21-s − 1.29i·23-s − 0.700i·27-s − 0.346i·29-s + 1.11·31-s + (−1.33 + 0.822i)33-s − 1.67i·37-s + 0.0997i·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0898 + 0.995i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1100 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.0898 + 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1100\)    =    \(2^{2} \cdot 5^{2} \cdot 11\)
Sign: $0.0898 + 0.995i$
Analytic conductor: \(29.9728\)
Root analytic conductor: \(5.47474\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{1100} (549, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1100,\ (\ :1),\ 0.0898 + 0.995i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.1280470545\)
\(L(\frac12)\) \(\approx\) \(0.1280470545\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
11 \( 1 + (-5.78 - 9.35i)T \)
good3 \( 1 - 4.69iT - 9T^{2} \)
7 \( 1 + 7.54T + 49T^{2} \)
13 \( 1 - 0.829T + 169T^{2} \)
17 \( 1 + 29.8T + 289T^{2} \)
19 \( 1 - 36.2iT - 361T^{2} \)
23 \( 1 + 29.7iT - 529T^{2} \)
29 \( 1 + 10.0iT - 841T^{2} \)
31 \( 1 - 34.6T + 961T^{2} \)
37 \( 1 + 61.9iT - 1.36e3T^{2} \)
41 \( 1 - 11.1iT - 1.68e3T^{2} \)
43 \( 1 + 39.4T + 1.84e3T^{2} \)
47 \( 1 - 6.35iT - 2.20e3T^{2} \)
53 \( 1 + 56.5iT - 2.80e3T^{2} \)
59 \( 1 + 70.4T + 3.48e3T^{2} \)
61 \( 1 - 8.41iT - 3.72e3T^{2} \)
67 \( 1 + 18.7iT - 4.48e3T^{2} \)
71 \( 1 + 3.79T + 5.04e3T^{2} \)
73 \( 1 - 70.9T + 5.32e3T^{2} \)
79 \( 1 + 127. iT - 6.24e3T^{2} \)
83 \( 1 - 100.T + 6.88e3T^{2} \)
89 \( 1 - 66.0T + 7.92e3T^{2} \)
97 \( 1 + 1.65iT - 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.26679077724096028698783076477, −9.504409966148349380904380232306, −9.020687067797317515109649679606, −8.038284165090597561334951533051, −6.66260066126276707584620247124, −6.13448494901049594430829042898, −4.85783741765287495630120443299, −4.16719704454267118425100320862, −3.47325720447139442818769341629, −2.20441252033302037825847556763, 0.04127126036490997556572686159, 1.15171601573893355703250057925, 2.47423649687269157450535577678, 3.29360082146063257805740548206, 4.73987416139309872417334625371, 6.06558160944955002657608386101, 6.65978912557865608477282872148, 7.03340619435789790978400569699, 8.204741884641119503294506794401, 8.907987417359620775668691353318

Graph of the $Z$-function along the critical line