| L(s) = 1 | + 1.41·2-s − 3.43i·3-s + 2.00·4-s + (−3.90 − 3.11i)5-s − 4.86i·6-s + 2.82·7-s + 2.82·8-s − 2.81·9-s + (−5.52 − 4.41i)10-s + (−7.81 − 7.74i)11-s − 6.87i·12-s + 3.98·13-s + 4.00·14-s + (−10.7 + 13.4i)15-s + 4.00·16-s + 23.2·17-s + ⋯ |
| L(s) = 1 | + 0.707·2-s − 1.14i·3-s + 0.500·4-s + (−0.781 − 0.623i)5-s − 0.810i·6-s + 0.404·7-s + 0.353·8-s − 0.312·9-s + (−0.552 − 0.441i)10-s + (−0.710 − 0.703i)11-s − 0.572i·12-s + 0.306·13-s + 0.285·14-s + (−0.714 + 0.895i)15-s + 0.250·16-s + 1.36·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 110 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.116 + 0.993i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 110 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.116 + 0.993i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{3}{2})\) |
\(\approx\) |
\(1.38922 - 1.23620i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.38922 - 1.23620i\) |
| \(L(2)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 - 1.41T \) |
| 5 | \( 1 + (3.90 + 3.11i)T \) |
| 11 | \( 1 + (7.81 + 7.74i)T \) |
| good | 3 | \( 1 + 3.43iT - 9T^{2} \) |
| 7 | \( 1 - 2.82T + 49T^{2} \) |
| 13 | \( 1 - 3.98T + 169T^{2} \) |
| 17 | \( 1 - 23.2T + 289T^{2} \) |
| 19 | \( 1 - 33.1iT - 361T^{2} \) |
| 23 | \( 1 + 2.16iT - 529T^{2} \) |
| 29 | \( 1 - 11.5iT - 841T^{2} \) |
| 31 | \( 1 - 36.7T + 961T^{2} \) |
| 37 | \( 1 - 17.4iT - 1.36e3T^{2} \) |
| 41 | \( 1 - 45.0iT - 1.68e3T^{2} \) |
| 43 | \( 1 + 63.4T + 1.84e3T^{2} \) |
| 47 | \( 1 + 46.5iT - 2.20e3T^{2} \) |
| 53 | \( 1 + 11.2iT - 2.80e3T^{2} \) |
| 59 | \( 1 + 44.7T + 3.48e3T^{2} \) |
| 61 | \( 1 - 38.8iT - 3.72e3T^{2} \) |
| 67 | \( 1 + 91.5iT - 4.48e3T^{2} \) |
| 71 | \( 1 - 54.5T + 5.04e3T^{2} \) |
| 73 | \( 1 - 56.1T + 5.32e3T^{2} \) |
| 79 | \( 1 + 101. iT - 6.24e3T^{2} \) |
| 83 | \( 1 - 15.7T + 6.88e3T^{2} \) |
| 89 | \( 1 + 28.7T + 7.92e3T^{2} \) |
| 97 | \( 1 - 76.2iT - 9.40e3T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.09562779340800971944893293933, −12.23942508994659822884290422148, −11.65582985187063030501976169899, −10.24136371470189739616860653117, −8.125147201922282807779916247338, −7.87031371783802298482283448986, −6.32646947268129914989224325554, −5.08387851077189746051004884894, −3.44542111927037707933939008853, −1.33424321347456970253732503376,
2.98923183501691408625318562296, 4.26409516634650343113911881493, 5.18674699809870638591725685997, 6.94729475668135637497894314672, 8.067278446086762853168219978152, 9.723787759765641543289505161420, 10.66216565027984705589685648161, 11.44782066104145546778311860976, 12.55915497750121345068984078538, 13.87681989825659281247409265522