Properties

Label 2-110-11.9-c1-0-0
Degree $2$
Conductor $110$
Sign $-0.973 + 0.227i$
Analytic cond. $0.878354$
Root an. cond. $0.937205$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Error: table mf_hecke_newspace_traces does not exist

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.309 + 0.951i)2-s + (−2.33 + 1.69i)3-s + (−0.809 − 0.587i)4-s + (0.309 + 0.951i)5-s + (−0.890 − 2.74i)6-s + (−3.17 − 2.30i)7-s + (0.809 − 0.587i)8-s + (1.64 − 5.05i)9-s − 0.999·10-s + (−1.42 + 2.99i)11-s + 2.88·12-s + (−1.80 + 5.54i)13-s + (3.17 − 2.30i)14-s + (−2.33 − 1.69i)15-s + (0.309 + 0.951i)16-s + (0.332 + 1.02i)17-s + ⋯
L(s)  = 1  + (−0.218 + 0.672i)2-s + (−1.34 + 0.978i)3-s + (−0.404 − 0.293i)4-s + (0.138 + 0.425i)5-s + (−0.363 − 1.11i)6-s + (−1.20 − 0.873i)7-s + (0.286 − 0.207i)8-s + (0.547 − 1.68i)9-s − 0.316·10-s + (−0.430 + 0.902i)11-s + 0.832·12-s + (−0.499 + 1.53i)13-s + (0.849 − 0.617i)14-s + (−0.602 − 0.437i)15-s + (0.0772 + 0.237i)16-s + (0.0806 + 0.248i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 110 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.973 + 0.227i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 110 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.973 + 0.227i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(110\)    =    \(2 \cdot 5 \cdot 11\)
Sign: $-0.973 + 0.227i$
Analytic conductor: \(0.878354\)
Root analytic conductor: \(0.937205\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{110} (31, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 110,\ (\ :1/2),\ -0.973 + 0.227i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.0392920 - 0.341234i\)
\(L(\frac12)\) \(\approx\) \(0.0392920 - 0.341234i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.309 - 0.951i)T \)
5 \( 1 + (-0.309 - 0.951i)T \)
11 \( 1 + (1.42 - 2.99i)T \)
good3 \( 1 + (2.33 - 1.69i)T + (0.927 - 2.85i)T^{2} \)
7 \( 1 + (3.17 + 2.30i)T + (2.16 + 6.65i)T^{2} \)
13 \( 1 + (1.80 - 5.54i)T + (-10.5 - 7.64i)T^{2} \)
17 \( 1 + (-0.332 - 1.02i)T + (-13.7 + 9.99i)T^{2} \)
19 \( 1 + (1.22 - 0.891i)T + (5.87 - 18.0i)T^{2} \)
23 \( 1 - 5.07T + 23T^{2} \)
29 \( 1 + (0.306 + 0.222i)T + (8.96 + 27.5i)T^{2} \)
31 \( 1 + (2.02 - 6.24i)T + (-25.0 - 18.2i)T^{2} \)
37 \( 1 + (-0.832 - 0.604i)T + (11.4 + 35.1i)T^{2} \)
41 \( 1 + (3.19 - 2.32i)T + (12.6 - 38.9i)T^{2} \)
43 \( 1 + 0.446T + 43T^{2} \)
47 \( 1 + (-6.14 + 4.46i)T + (14.5 - 44.6i)T^{2} \)
53 \( 1 + (-1.93 + 5.95i)T + (-42.8 - 31.1i)T^{2} \)
59 \( 1 + (-8.89 - 6.46i)T + (18.2 + 56.1i)T^{2} \)
61 \( 1 + (3.10 + 9.54i)T + (-49.3 + 35.8i)T^{2} \)
67 \( 1 + 5.98T + 67T^{2} \)
71 \( 1 + (-1.55 - 4.78i)T + (-57.4 + 41.7i)T^{2} \)
73 \( 1 + (2.86 + 2.07i)T + (22.5 + 69.4i)T^{2} \)
79 \( 1 + (-0.218 + 0.671i)T + (-63.9 - 46.4i)T^{2} \)
83 \( 1 + (-3.62 - 11.1i)T + (-67.1 + 48.7i)T^{2} \)
89 \( 1 - 0.0446T + 89T^{2} \)
97 \( 1 + (5.05 - 15.5i)T + (-78.4 - 57.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.52120799033476397019713266463, −13.19598093379782249647790055293, −12.03207215019985204174228450250, −10.73099866319874705828297254719, −10.05806322701886929500251765093, −9.296122734987927036152281778673, −7.04811719089829024307130350096, −6.55123500778011176458540553955, −5.10471948390995157179385128087, −3.98131011991580302443621802076, 0.47196513080877978362943346881, 2.80903151152349718685901009502, 5.32400956280722063658849616265, 6.02858581003208838941006143607, 7.50742988166640457580016879153, 8.891524582071811297802986665830, 10.19607486199793323714582944479, 11.18555570440107002720692737151, 12.21315723316123518466874980947, 12.87237821734910835654232683044

Graph of the $Z$-function along the critical line