Properties

Label 2-11-11.6-c4-0-0
Degree $2$
Conductor $11$
Sign $0.621 - 0.783i$
Analytic cond. $1.13706$
Root an. cond. $1.06633$
Motivic weight $4$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−3.38 + 1.09i)2-s + (12.7 + 9.28i)3-s + (−2.71 + 1.96i)4-s + (5.48 − 16.8i)5-s + (−53.4 − 17.3i)6-s + (−19.6 − 27.0i)7-s + (40.4 − 55.6i)8-s + (52.1 + 160. i)9-s + 63.1i·10-s + (44.7 − 112. i)11-s − 52.9·12-s + (−133. + 43.4i)13-s + (96.1 + 69.8i)14-s + (226. − 164. i)15-s + (−59.0 + 181. i)16-s + (84.2 + 27.3i)17-s + ⋯
L(s)  = 1  + (−0.845 + 0.274i)2-s + (1.42 + 1.03i)3-s + (−0.169 + 0.123i)4-s + (0.219 − 0.675i)5-s + (−1.48 − 0.482i)6-s + (−0.400 − 0.551i)7-s + (0.632 − 0.869i)8-s + (0.643 + 1.98i)9-s + 0.631i·10-s + (0.369 − 0.929i)11-s − 0.367·12-s + (−0.790 + 0.256i)13-s + (0.490 + 0.356i)14-s + (1.00 − 0.732i)15-s + (−0.230 + 0.710i)16-s + (0.291 + 0.0946i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 11 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.621 - 0.783i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (0.621 - 0.783i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(11\)
Sign: $0.621 - 0.783i$
Analytic conductor: \(1.13706\)
Root analytic conductor: \(1.06633\)
Motivic weight: \(4\)
Rational: no
Arithmetic: yes
Character: $\chi_{11} (6, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 11,\ (\ :2),\ 0.621 - 0.783i)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(0.871480 + 0.420893i\)
\(L(\frac12)\) \(\approx\) \(0.871480 + 0.420893i\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad11 \( 1 + (-44.7 + 112. i)T \)
good2 \( 1 + (3.38 - 1.09i)T + (12.9 - 9.40i)T^{2} \)
3 \( 1 + (-12.7 - 9.28i)T + (25.0 + 77.0i)T^{2} \)
5 \( 1 + (-5.48 + 16.8i)T + (-505. - 367. i)T^{2} \)
7 \( 1 + (19.6 + 27.0i)T + (-741. + 2.28e3i)T^{2} \)
13 \( 1 + (133. - 43.4i)T + (2.31e4 - 1.67e4i)T^{2} \)
17 \( 1 + (-84.2 - 27.3i)T + (6.75e4 + 4.90e4i)T^{2} \)
19 \( 1 + (192. - 264. i)T + (-4.02e4 - 1.23e5i)T^{2} \)
23 \( 1 + 527.T + 2.79e5T^{2} \)
29 \( 1 + (100. + 138. i)T + (-2.18e5 + 6.72e5i)T^{2} \)
31 \( 1 + (318. + 981. i)T + (-7.47e5 + 5.42e5i)T^{2} \)
37 \( 1 + (-238. + 173. i)T + (5.79e5 - 1.78e6i)T^{2} \)
41 \( 1 + (-16.1 + 22.2i)T + (-8.73e5 - 2.68e6i)T^{2} \)
43 \( 1 - 2.50e3iT - 3.41e6T^{2} \)
47 \( 1 + (-1.08e3 - 785. i)T + (1.50e6 + 4.64e6i)T^{2} \)
53 \( 1 + (-159. - 491. i)T + (-6.38e6 + 4.63e6i)T^{2} \)
59 \( 1 + (-1.79e3 + 1.30e3i)T + (3.74e6 - 1.15e7i)T^{2} \)
61 \( 1 + (-5.06e3 - 1.64e3i)T + (1.12e7 + 8.13e6i)T^{2} \)
67 \( 1 + 4.02e3T + 2.01e7T^{2} \)
71 \( 1 + (-538. + 1.65e3i)T + (-2.05e7 - 1.49e7i)T^{2} \)
73 \( 1 + (-1.32e3 - 1.82e3i)T + (-8.77e6 + 2.70e7i)T^{2} \)
79 \( 1 + (-3.33e3 + 1.08e3i)T + (3.15e7 - 2.28e7i)T^{2} \)
83 \( 1 + (1.05e4 + 3.42e3i)T + (3.83e7 + 2.78e7i)T^{2} \)
89 \( 1 - 2.77e3T + 6.27e7T^{2} \)
97 \( 1 + (-3.04e3 - 9.38e3i)T + (-7.16e7 + 5.20e7i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−19.90682094385855768562497417430, −18.99344528998970562662406273913, −16.87105644316337875510711536154, −16.21478909939041780300710033268, −14.44729758261952974629097407181, −13.19933792033549000156349917319, −10.09298484565305749821942742712, −9.144257452871662531740908820699, −7.984619358551889532129356863252, −3.99843181538594636360595410056, 2.30452235969826111214534811765, 7.15680928599117016741818066737, 8.735236192433585620935819667396, 9.953131988191552200881844098853, 12.46589188566179489025569585308, 14.03047383717371924021647076150, 14.95919617758492132898476870776, 17.65811878235009786123398911002, 18.53973923380379159456876510718, 19.46813493408203915302477622517

Graph of the $Z$-function along the critical line