Properties

Label 2-11-11.2-c4-0-0
Degree $2$
Conductor $11$
Sign $-0.971 - 0.236i$
Analytic cond. $1.13706$
Root an. cond. $1.06633$
Motivic weight $4$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−5.45 − 1.77i)2-s + (−10.4 + 7.55i)3-s + (13.6 + 9.95i)4-s + (−9.33 − 28.7i)5-s + (70.1 − 22.8i)6-s + (−33.6 + 46.2i)7-s + (−3.13 − 4.31i)8-s + (26.0 − 80.2i)9-s + 173. i·10-s + (−104. − 61.2i)11-s − 217.·12-s + (−21.1 − 6.88i)13-s + (265. − 192. i)14-s + (314. + 228. i)15-s + (−74.2 − 228. i)16-s + (−176. + 57.3i)17-s + ⋯
L(s)  = 1  + (−1.36 − 0.443i)2-s + (−1.15 + 0.839i)3-s + (0.856 + 0.621i)4-s + (−0.373 − 1.14i)5-s + (1.94 − 0.633i)6-s + (−0.685 + 0.944i)7-s + (−0.0490 − 0.0674i)8-s + (0.321 − 0.990i)9-s + 1.73i·10-s + (−0.862 − 0.506i)11-s − 1.51·12-s + (−0.125 − 0.0407i)13-s + (1.35 − 0.984i)14-s + (1.39 + 1.01i)15-s + (−0.290 − 0.892i)16-s + (−0.610 + 0.198i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 11 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.971 - 0.236i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (-0.971 - 0.236i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(11\)
Sign: $-0.971 - 0.236i$
Analytic conductor: \(1.13706\)
Root analytic conductor: \(1.06633\)
Motivic weight: \(4\)
Rational: no
Arithmetic: yes
Character: $\chi_{11} (2, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 11,\ (\ :2),\ -0.971 - 0.236i)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(0.00292430 + 0.0243713i\)
\(L(\frac12)\) \(\approx\) \(0.00292430 + 0.0243713i\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad11 \( 1 + (104. + 61.2i)T \)
good2 \( 1 + (5.45 + 1.77i)T + (12.9 + 9.40i)T^{2} \)
3 \( 1 + (10.4 - 7.55i)T + (25.0 - 77.0i)T^{2} \)
5 \( 1 + (9.33 + 28.7i)T + (-505. + 367. i)T^{2} \)
7 \( 1 + (33.6 - 46.2i)T + (-741. - 2.28e3i)T^{2} \)
13 \( 1 + (21.1 + 6.88i)T + (2.31e4 + 1.67e4i)T^{2} \)
17 \( 1 + (176. - 57.3i)T + (6.75e4 - 4.90e4i)T^{2} \)
19 \( 1 + (-169. - 233. i)T + (-4.02e4 + 1.23e5i)T^{2} \)
23 \( 1 + 116.T + 2.79e5T^{2} \)
29 \( 1 + (419. - 576. i)T + (-2.18e5 - 6.72e5i)T^{2} \)
31 \( 1 + (28.3 - 87.2i)T + (-7.47e5 - 5.42e5i)T^{2} \)
37 \( 1 + (1.02e3 + 744. i)T + (5.79e5 + 1.78e6i)T^{2} \)
41 \( 1 + (-340. - 468. i)T + (-8.73e5 + 2.68e6i)T^{2} \)
43 \( 1 + 1.41e3iT - 3.41e6T^{2} \)
47 \( 1 + (3.36e3 - 2.44e3i)T + (1.50e6 - 4.64e6i)T^{2} \)
53 \( 1 + (-1.13e3 + 3.49e3i)T + (-6.38e6 - 4.63e6i)T^{2} \)
59 \( 1 + (378. + 275. i)T + (3.74e6 + 1.15e7i)T^{2} \)
61 \( 1 + (-777. + 252. i)T + (1.12e7 - 8.13e6i)T^{2} \)
67 \( 1 - 6.01e3T + 2.01e7T^{2} \)
71 \( 1 + (-1.14e3 - 3.53e3i)T + (-2.05e7 + 1.49e7i)T^{2} \)
73 \( 1 + (1.26e3 - 1.74e3i)T + (-8.77e6 - 2.70e7i)T^{2} \)
79 \( 1 + (1.03e4 + 3.37e3i)T + (3.15e7 + 2.28e7i)T^{2} \)
83 \( 1 + (4.23e3 - 1.37e3i)T + (3.83e7 - 2.78e7i)T^{2} \)
89 \( 1 + 1.58e3T + 6.27e7T^{2} \)
97 \( 1 + (5.78e3 - 1.78e4i)T + (-7.16e7 - 5.20e7i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−20.33948896866492285687845583756, −18.95957128874381145428663968135, −17.68274897766651841029885652842, −16.37662744716281736341164716226, −15.93007131023420052189089158790, −12.50788758811442428629595296671, −11.21547669498278198826400858278, −9.825992453622954164315950861234, −8.527591908548574722969546036499, −5.33375273399099302973235601308, 0.04768232989740300483805046856, 6.71362726836937285063502453491, 7.42966270034087887983702054793, 10.11102679916742680214758608409, 11.22405681304792590699486095849, 13.20186017783644510443667800608, 15.58568154922842410367284578988, 16.91306313657320989283056141287, 17.93794226106205200974526650346, 18.66179269835816651759483036973

Graph of the $Z$-function along the critical line