Properties

Label 2-11-11.3-c3-0-1
Degree $2$
Conductor $11$
Sign $0.985 + 0.171i$
Analytic cond. $0.649021$
Root an. cond. $0.805618$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.747 − 0.542i)2-s + (−0.476 − 1.46i)3-s + (−2.20 + 6.79i)4-s + (−7.05 − 5.12i)5-s + (−1.15 − 0.836i)6-s + (0.239 − 0.737i)7-s + (4.32 + 13.3i)8-s + (19.9 − 14.4i)9-s − 8.05·10-s + (32.3 − 16.8i)11-s + 11.0·12-s + (−52.2 + 37.9i)13-s + (−0.221 − 0.680i)14-s + (−4.15 + 12.7i)15-s + (−35.8 − 26.0i)16-s + (−56.7 − 41.2i)17-s + ⋯
L(s)  = 1  + (0.264 − 0.191i)2-s + (−0.0916 − 0.282i)3-s + (−0.276 + 0.849i)4-s + (−0.631 − 0.458i)5-s + (−0.0783 − 0.0569i)6-s + (0.0129 − 0.0398i)7-s + (0.191 + 0.587i)8-s + (0.737 − 0.536i)9-s − 0.254·10-s + (0.887 − 0.461i)11-s + 0.265·12-s + (−1.11 + 0.810i)13-s + (−0.00422 − 0.0129i)14-s + (−0.0715 + 0.220i)15-s + (−0.559 − 0.406i)16-s + (−0.809 − 0.588i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 11 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.985 + 0.171i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.985 + 0.171i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(11\)
Sign: $0.985 + 0.171i$
Analytic conductor: \(0.649021\)
Root analytic conductor: \(0.805618\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{11} (3, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 11,\ (\ :3/2),\ 0.985 + 0.171i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.903164 - 0.0781412i\)
\(L(\frac12)\) \(\approx\) \(0.903164 - 0.0781412i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad11 \( 1 + (-32.3 + 16.8i)T \)
good2 \( 1 + (-0.747 + 0.542i)T + (2.47 - 7.60i)T^{2} \)
3 \( 1 + (0.476 + 1.46i)T + (-21.8 + 15.8i)T^{2} \)
5 \( 1 + (7.05 + 5.12i)T + (38.6 + 118. i)T^{2} \)
7 \( 1 + (-0.239 + 0.737i)T + (-277. - 201. i)T^{2} \)
13 \( 1 + (52.2 - 37.9i)T + (678. - 2.08e3i)T^{2} \)
17 \( 1 + (56.7 + 41.2i)T + (1.51e3 + 4.67e3i)T^{2} \)
19 \( 1 + (-40.0 - 123. i)T + (-5.54e3 + 4.03e3i)T^{2} \)
23 \( 1 - 103.T + 1.21e4T^{2} \)
29 \( 1 + (21.2 - 65.3i)T + (-1.97e4 - 1.43e4i)T^{2} \)
31 \( 1 + (4.63 - 3.36i)T + (9.20e3 - 2.83e4i)T^{2} \)
37 \( 1 + (-53.2 + 163. i)T + (-4.09e4 - 2.97e4i)T^{2} \)
41 \( 1 + (65.3 + 201. i)T + (-5.57e4 + 4.05e4i)T^{2} \)
43 \( 1 - 300.T + 7.95e4T^{2} \)
47 \( 1 + (59.0 + 181. i)T + (-8.39e4 + 6.10e4i)T^{2} \)
53 \( 1 + (519. - 377. i)T + (4.60e4 - 1.41e5i)T^{2} \)
59 \( 1 + (-16.0 + 49.4i)T + (-1.66e5 - 1.20e5i)T^{2} \)
61 \( 1 + (-398. - 289. i)T + (7.01e4 + 2.15e5i)T^{2} \)
67 \( 1 + 320.T + 3.00e5T^{2} \)
71 \( 1 + (-147. - 107. i)T + (1.10e5 + 3.40e5i)T^{2} \)
73 \( 1 + (64.2 - 197. i)T + (-3.14e5 - 2.28e5i)T^{2} \)
79 \( 1 + (528. - 383. i)T + (1.52e5 - 4.68e5i)T^{2} \)
83 \( 1 + (972. + 706. i)T + (1.76e5 + 5.43e5i)T^{2} \)
89 \( 1 - 716.T + 7.04e5T^{2} \)
97 \( 1 + (-508. + 369. i)T + (2.82e5 - 8.68e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−20.25674848036352470895890250638, −18.82187852890456561081254530695, −17.28761859333008092246271511018, −16.15012793727240559641515813285, −14.20689730368077320626472768149, −12.55823521839614835080001166371, −11.75215950459017834414429833599, −9.103108914830104546418463265988, −7.29949774709385328752952830106, −4.17494765173152190208858738824, 4.70378310900150901090610350822, 7.06821424214995517744993696332, 9.628690384199445352576498222380, 11.08609926178566813637797037704, 13.11887775095989291991778399578, 14.86812350942138223394832950016, 15.53938036788274268438005076924, 17.47381591369639311135036267627, 19.10500498353451245877147969178, 19.86766789331414677345136192476

Graph of the $Z$-function along the critical line