Properties

Label 2-11-11.9-c9-0-0
Degree $2$
Conductor $11$
Sign $0.0200 + 0.999i$
Analytic cond. $5.66539$
Root an. cond. $2.38020$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−10.8 + 33.3i)2-s + (−181. + 132. i)3-s + (−582. − 423. i)4-s + (311. + 957. i)5-s + (−2.43e3 − 7.50e3i)6-s + (7.26e3 + 5.28e3i)7-s + (5.90e3 − 4.28e3i)8-s + (9.54e3 − 2.93e4i)9-s − 3.53e4·10-s + (−3.85e4 − 2.95e4i)11-s + 1.61e5·12-s + (−6.77e3 + 2.08e4i)13-s + (−2.55e5 + 1.85e5i)14-s + (−1.83e5 − 1.33e5i)15-s + (−3.47e4 − 1.06e5i)16-s + (1.76e5 + 5.43e5i)17-s + ⋯
L(s)  = 1  + (−0.479 + 1.47i)2-s + (−1.29 + 0.942i)3-s + (−1.13 − 0.826i)4-s + (0.222 + 0.685i)5-s + (−0.768 − 2.36i)6-s + (1.14 + 0.831i)7-s + (0.509 − 0.370i)8-s + (0.484 − 1.49i)9-s − 1.11·10-s + (−0.793 − 0.608i)11-s + 2.25·12-s + (−0.0658 + 0.202i)13-s + (−1.77 + 1.28i)14-s + (−0.934 − 0.678i)15-s + (−0.132 − 0.408i)16-s + (0.512 + 1.57i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 11 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0200 + 0.999i)\, \overline{\Lambda}(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & (0.0200 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(11\)
Sign: $0.0200 + 0.999i$
Analytic conductor: \(5.66539\)
Root analytic conductor: \(2.38020\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: $\chi_{11} (9, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 11,\ (\ :9/2),\ 0.0200 + 0.999i)\)

Particular Values

\(L(5)\) \(\approx\) \(0.407123 - 0.399059i\)
\(L(\frac12)\) \(\approx\) \(0.407123 - 0.399059i\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad11 \( 1 + (3.85e4 + 2.95e4i)T \)
good2 \( 1 + (10.8 - 33.3i)T + (-414. - 300. i)T^{2} \)
3 \( 1 + (181. - 132. i)T + (6.08e3 - 1.87e4i)T^{2} \)
5 \( 1 + (-311. - 957. i)T + (-1.58e6 + 1.14e6i)T^{2} \)
7 \( 1 + (-7.26e3 - 5.28e3i)T + (1.24e7 + 3.83e7i)T^{2} \)
13 \( 1 + (6.77e3 - 2.08e4i)T + (-8.57e9 - 6.23e9i)T^{2} \)
17 \( 1 + (-1.76e5 - 5.43e5i)T + (-9.59e10 + 6.97e10i)T^{2} \)
19 \( 1 + (-3.97e5 + 2.88e5i)T + (9.97e10 - 3.06e11i)T^{2} \)
23 \( 1 + 1.91e6T + 1.80e12T^{2} \)
29 \( 1 + (-1.59e5 - 1.15e5i)T + (4.48e12 + 1.37e13i)T^{2} \)
31 \( 1 + (6.98e5 - 2.14e6i)T + (-2.13e13 - 1.55e13i)T^{2} \)
37 \( 1 + (-3.94e6 - 2.86e6i)T + (4.01e13 + 1.23e14i)T^{2} \)
41 \( 1 + (5.49e6 - 3.99e6i)T + (1.01e14 - 3.11e14i)T^{2} \)
43 \( 1 + 3.04e7T + 5.02e14T^{2} \)
47 \( 1 + (2.13e7 - 1.55e7i)T + (3.45e14 - 1.06e15i)T^{2} \)
53 \( 1 + (-8.53e6 + 2.62e7i)T + (-2.66e15 - 1.93e15i)T^{2} \)
59 \( 1 + (-6.55e7 - 4.76e7i)T + (2.67e15 + 8.23e15i)T^{2} \)
61 \( 1 + (1.28e7 + 3.95e7i)T + (-9.46e15 + 6.87e15i)T^{2} \)
67 \( 1 + 1.82e8T + 2.72e16T^{2} \)
71 \( 1 + (-8.49e7 - 2.61e8i)T + (-3.70e16 + 2.69e16i)T^{2} \)
73 \( 1 + (-1.34e8 - 9.73e7i)T + (1.81e16 + 5.59e16i)T^{2} \)
79 \( 1 + (-2.01e7 + 6.18e7i)T + (-9.69e16 - 7.04e16i)T^{2} \)
83 \( 1 + (3.39e7 + 1.04e8i)T + (-1.51e17 + 1.09e17i)T^{2} \)
89 \( 1 - 4.76e7T + 3.50e17T^{2} \)
97 \( 1 + (-4.77e7 + 1.46e8i)T + (-6.15e17 - 4.46e17i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−18.36582228998164286226861607031, −17.74513447008871323514551713812, −16.53541060016509818087434758081, −15.49361506703484616201886738609, −14.51042418668015702237646731355, −11.60055075326504441689556322946, −10.22364752804746828288088364733, −8.257470606100872415695985934980, −6.15540183112466127148341356114, −5.16006311871390757890251835492, 0.48364672439923201747227833535, 1.63993538664912316062977952344, 5.04316233645854968463941002543, 7.68074198685421249513991387049, 10.08439412077636722250879603313, 11.41117522837235724675813199284, 12.26544871509407052746960760635, 13.53537427631477244556435827926, 16.64678683110345639254762697157, 17.94361778323462827657033532049

Graph of the $Z$-function along the critical line