Properties

Label 2-109-109.75-c1-0-6
Degree $2$
Conductor $109$
Sign $-0.759 + 0.651i$
Analytic cond. $0.870369$
Root an. cond. $0.932935$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.05 − 1.83i)2-s + (−1.78 − 1.49i)3-s + (−1.24 − 2.15i)4-s + (−0.222 + 1.25i)5-s + (−4.63 + 1.68i)6-s + (0.247 − 1.40i)7-s − 1.03·8-s + (0.421 + 2.39i)9-s + (2.07 + 1.74i)10-s + (2.41 − 2.02i)11-s + (−1.00 + 5.71i)12-s + (−0.714 + 4.05i)13-s + (−2.31 − 1.94i)14-s + (2.28 − 1.91i)15-s + (1.39 − 2.40i)16-s + (−0.508 + 0.880i)17-s + ⋯
L(s)  = 1  + (0.749 − 1.29i)2-s + (−1.03 − 0.864i)3-s + (−0.622 − 1.07i)4-s + (−0.0993 + 0.563i)5-s + (−1.89 + 0.689i)6-s + (0.0935 − 0.530i)7-s − 0.366·8-s + (0.140 + 0.796i)9-s + (0.656 + 0.550i)10-s + (0.727 − 0.610i)11-s + (−0.290 + 1.64i)12-s + (−0.198 + 1.12i)13-s + (−0.618 − 0.519i)14-s + (0.589 − 0.494i)15-s + (0.347 − 0.602i)16-s + (−0.123 + 0.213i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 109 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.759 + 0.651i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 109 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.759 + 0.651i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(109\)
Sign: $-0.759 + 0.651i$
Analytic conductor: \(0.870369\)
Root analytic conductor: \(0.932935\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{109} (75, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 109,\ (\ :1/2),\ -0.759 + 0.651i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.386540 - 1.04438i\)
\(L(\frac12)\) \(\approx\) \(0.386540 - 1.04438i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad109 \( 1 + (8.96 - 5.34i)T \)
good2 \( 1 + (-1.05 + 1.83i)T + (-1 - 1.73i)T^{2} \)
3 \( 1 + (1.78 + 1.49i)T + (0.520 + 2.95i)T^{2} \)
5 \( 1 + (0.222 - 1.25i)T + (-4.69 - 1.71i)T^{2} \)
7 \( 1 + (-0.247 + 1.40i)T + (-6.57 - 2.39i)T^{2} \)
11 \( 1 + (-2.41 + 2.02i)T + (1.91 - 10.8i)T^{2} \)
13 \( 1 + (0.714 - 4.05i)T + (-12.2 - 4.44i)T^{2} \)
17 \( 1 + (0.508 - 0.880i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (-1.95 + 3.38i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (-2.69 - 4.66i)T + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + (8.13 + 6.82i)T + (5.03 + 28.5i)T^{2} \)
31 \( 1 + (-1.50 - 8.51i)T + (-29.1 + 10.6i)T^{2} \)
37 \( 1 + (-1.19 - 6.78i)T + (-34.7 + 12.6i)T^{2} \)
41 \( 1 + 0.845T + 41T^{2} \)
43 \( 1 + (3.41 - 5.90i)T + (-21.5 - 37.2i)T^{2} \)
47 \( 1 + (8.66 + 3.15i)T + (36.0 + 30.2i)T^{2} \)
53 \( 1 + (0.934 - 5.30i)T + (-49.8 - 18.1i)T^{2} \)
59 \( 1 + (-6.79 + 5.70i)T + (10.2 - 58.1i)T^{2} \)
61 \( 1 + (4.57 - 1.66i)T + (46.7 - 39.2i)T^{2} \)
67 \( 1 + (1.40 + 7.96i)T + (-62.9 + 22.9i)T^{2} \)
71 \( 1 + (4.98 + 8.62i)T + (-35.5 + 61.4i)T^{2} \)
73 \( 1 + (-6.00 + 5.03i)T + (12.6 - 71.8i)T^{2} \)
79 \( 1 + (1.46 + 8.32i)T + (-74.2 + 27.0i)T^{2} \)
83 \( 1 + (3.39 + 2.84i)T + (14.4 + 81.7i)T^{2} \)
89 \( 1 + (3.01 - 1.09i)T + (68.1 - 57.2i)T^{2} \)
97 \( 1 + (1.81 - 10.3i)T + (-91.1 - 33.1i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.18627139572674333129268346487, −11.93153585151185118365249496572, −11.45441553125141917265169776777, −10.83134601005623560122027998542, −9.409334642563926639360089301413, −7.32999830655085922433030385587, −6.40412259719653495853280413139, −4.88664907011598555662987408970, −3.40330260665496049892259084761, −1.43774032283561506094242734336, 4.09747753986043781124314668689, 5.16828528477797737822702902131, 5.75645417678065653660120250000, 7.12239030390052826810825563162, 8.479459278637474110019448479860, 9.826807662228895196364768894305, 11.04027170588560263600722451110, 12.27660996186228626714257448825, 13.02443236032602960497481803168, 14.60950209850413439671137644290

Graph of the $Z$-function along the critical line