Properties

Label 2-109-109.38-c1-0-5
Degree $2$
Conductor $109$
Sign $0.827 + 0.561i$
Analytic cond. $0.870369$
Root an. cond. $0.932935$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.00 − 1.73i)2-s + (−0.415 + 2.35i)3-s + (−1.01 − 1.75i)4-s + (3.15 − 1.14i)5-s + (3.68 + 3.09i)6-s + (−3.89 + 1.41i)7-s − 0.0647·8-s + (−2.56 − 0.934i)9-s + (1.17 − 6.63i)10-s + (−0.887 − 5.03i)11-s + (4.57 − 1.66i)12-s + (−3.80 + 1.38i)13-s + (−1.44 + 8.20i)14-s + (1.39 + 7.91i)15-s + (1.96 − 3.40i)16-s + (−1.06 + 1.84i)17-s + ⋯
L(s)  = 1  + (0.709 − 1.22i)2-s + (−0.240 + 1.36i)3-s + (−0.508 − 0.879i)4-s + (1.41 − 0.513i)5-s + (1.50 + 1.26i)6-s + (−1.47 + 0.536i)7-s − 0.0228·8-s + (−0.856 − 0.311i)9-s + (0.370 − 2.09i)10-s + (−0.267 − 1.51i)11-s + (1.31 − 0.480i)12-s + (−1.05 + 0.383i)13-s + (−0.386 + 2.19i)14-s + (0.360 + 2.04i)15-s + (0.491 − 0.851i)16-s + (−0.258 + 0.447i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 109 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.827 + 0.561i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 109 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.827 + 0.561i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(109\)
Sign: $0.827 + 0.561i$
Analytic conductor: \(0.870369\)
Root analytic conductor: \(0.932935\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{109} (38, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 109,\ (\ :1/2),\ 0.827 + 0.561i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.35773 - 0.417341i\)
\(L(\frac12)\) \(\approx\) \(1.35773 - 0.417341i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad109 \( 1 + (-0.968 - 10.3i)T \)
good2 \( 1 + (-1.00 + 1.73i)T + (-1 - 1.73i)T^{2} \)
3 \( 1 + (0.415 - 2.35i)T + (-2.81 - 1.02i)T^{2} \)
5 \( 1 + (-3.15 + 1.14i)T + (3.83 - 3.21i)T^{2} \)
7 \( 1 + (3.89 - 1.41i)T + (5.36 - 4.49i)T^{2} \)
11 \( 1 + (0.887 + 5.03i)T + (-10.3 + 3.76i)T^{2} \)
13 \( 1 + (3.80 - 1.38i)T + (9.95 - 8.35i)T^{2} \)
17 \( 1 + (1.06 - 1.84i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (2.09 - 3.63i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (-1.45 - 2.51i)T + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + (-1.00 + 5.70i)T + (-27.2 - 9.91i)T^{2} \)
31 \( 1 + (-1.15 - 0.419i)T + (23.7 + 19.9i)T^{2} \)
37 \( 1 + (-2.14 - 0.779i)T + (28.3 + 23.7i)T^{2} \)
41 \( 1 + 1.13T + 41T^{2} \)
43 \( 1 + (-1.23 + 2.13i)T + (-21.5 - 37.2i)T^{2} \)
47 \( 1 + (-3.47 + 2.91i)T + (8.16 - 46.2i)T^{2} \)
53 \( 1 + (2.41 - 0.879i)T + (40.6 - 34.0i)T^{2} \)
59 \( 1 + (0.0923 + 0.523i)T + (-55.4 + 20.1i)T^{2} \)
61 \( 1 + (-7.52 - 6.31i)T + (10.5 + 60.0i)T^{2} \)
67 \( 1 + (-5.07 - 1.84i)T + (51.3 + 43.0i)T^{2} \)
71 \( 1 + (-6.79 - 11.7i)T + (-35.5 + 61.4i)T^{2} \)
73 \( 1 + (0.129 + 0.733i)T + (-68.5 + 24.9i)T^{2} \)
79 \( 1 + (4.33 + 1.57i)T + (60.5 + 50.7i)T^{2} \)
83 \( 1 + (0.0770 - 0.436i)T + (-77.9 - 28.3i)T^{2} \)
89 \( 1 + (0.734 + 0.615i)T + (15.4 + 87.6i)T^{2} \)
97 \( 1 + (-6.80 + 2.47i)T + (74.3 - 62.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.33091951618459562333815970261, −12.65886293586044527913252189480, −11.45160528469574853506250611332, −10.20389423117839672942204904011, −9.883607629904839472395047265257, −8.931609230677887674465071760254, −6.05504350174916472132525276894, −5.27348440186275414197093183051, −3.84017169923046951904990859309, −2.57861979433938734627110373134, 2.42305771792240454310390428813, 4.97512938450815742914743567428, 6.34070549852126250542813739847, 6.82042112798657572131161640938, 7.43419275338477083301425013339, 9.538283901102038775039050019002, 10.42803736028425577962314424602, 12.68354803387925853323354887357, 12.84741835938370331742207541979, 13.71876814780977522997779707734

Graph of the $Z$-function along the critical line