Properties

Label 2-109-109.105-c1-0-2
Degree $2$
Conductor $109$
Sign $0.837 - 0.545i$
Analytic cond. $0.870369$
Root an. cond. $0.932935$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.384 − 0.666i)2-s + (−2.14 + 0.779i)3-s + (0.703 + 1.21i)4-s + (1.33 + 1.11i)5-s + (−0.304 + 1.72i)6-s + (0.847 + 0.711i)7-s + 2.62·8-s + (1.68 − 1.41i)9-s + (1.25 − 0.457i)10-s + (−0.455 − 0.165i)11-s + (−2.45 − 2.06i)12-s + (−1.20 − 1.01i)13-s + (0.800 − 0.291i)14-s + (−3.72 − 1.35i)15-s + (−0.398 + 0.690i)16-s + (1.52 − 2.63i)17-s + ⋯
L(s)  = 1  + (0.272 − 0.471i)2-s + (−1.23 + 0.450i)3-s + (0.351 + 0.609i)4-s + (0.595 + 0.499i)5-s + (−0.124 + 0.705i)6-s + (0.320 + 0.268i)7-s + 0.927·8-s + (0.560 − 0.470i)9-s + (0.397 − 0.144i)10-s + (−0.137 − 0.0500i)11-s + (−0.709 − 0.595i)12-s + (−0.334 − 0.280i)13-s + (0.213 − 0.0778i)14-s + (−0.961 − 0.349i)15-s + (−0.0996 + 0.172i)16-s + (0.368 − 0.639i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 109 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.837 - 0.545i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 109 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.837 - 0.545i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(109\)
Sign: $0.837 - 0.545i$
Analytic conductor: \(0.870369\)
Root analytic conductor: \(0.932935\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{109} (105, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 109,\ (\ :1/2),\ 0.837 - 0.545i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.952060 + 0.282672i\)
\(L(\frac12)\) \(\approx\) \(0.952060 + 0.282672i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad109 \( 1 + (4.96 - 9.18i)T \)
good2 \( 1 + (-0.384 + 0.666i)T + (-1 - 1.73i)T^{2} \)
3 \( 1 + (2.14 - 0.779i)T + (2.29 - 1.92i)T^{2} \)
5 \( 1 + (-1.33 - 1.11i)T + (0.868 + 4.92i)T^{2} \)
7 \( 1 + (-0.847 - 0.711i)T + (1.21 + 6.89i)T^{2} \)
11 \( 1 + (0.455 + 0.165i)T + (8.42 + 7.07i)T^{2} \)
13 \( 1 + (1.20 + 1.01i)T + (2.25 + 12.8i)T^{2} \)
17 \( 1 + (-1.52 + 2.63i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (1.41 - 2.44i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (3.40 + 5.88i)T + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + (-9.24 + 3.36i)T + (22.2 - 18.6i)T^{2} \)
31 \( 1 + (5.98 - 5.02i)T + (5.38 - 30.5i)T^{2} \)
37 \( 1 + (-2.99 + 2.51i)T + (6.42 - 36.4i)T^{2} \)
41 \( 1 + 0.837T + 41T^{2} \)
43 \( 1 + (-0.543 + 0.941i)T + (-21.5 - 37.2i)T^{2} \)
47 \( 1 + (1.25 + 7.14i)T + (-44.1 + 16.0i)T^{2} \)
53 \( 1 + (-3.70 - 3.10i)T + (9.20 + 52.1i)T^{2} \)
59 \( 1 + (-1.51 - 0.552i)T + (45.1 + 37.9i)T^{2} \)
61 \( 1 + (2.44 - 13.8i)T + (-57.3 - 20.8i)T^{2} \)
67 \( 1 + (11.0 - 9.25i)T + (11.6 - 65.9i)T^{2} \)
71 \( 1 + (-1.54 - 2.68i)T + (-35.5 + 61.4i)T^{2} \)
73 \( 1 + (6.45 + 2.35i)T + (55.9 + 46.9i)T^{2} \)
79 \( 1 + (-10.8 + 9.09i)T + (13.7 - 77.7i)T^{2} \)
83 \( 1 + (2.50 - 0.911i)T + (63.5 - 53.3i)T^{2} \)
89 \( 1 + (2.36 - 13.3i)T + (-83.6 - 30.4i)T^{2} \)
97 \( 1 + (1.51 + 1.26i)T + (16.8 + 95.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.64362807891741973523475597683, −12.25918638166774476422101782256, −11.85730682629471850854978367297, −10.60148748389778623325196532480, −10.22229836598353414151971316230, −8.305532509889948676090251631015, −6.83574448345396867683976164530, −5.67779170850501144519689493780, −4.41559310642913391204668294016, −2.55974529156420730716563989668, 1.49550901784354770057515034259, 4.77669608542845920936960296704, 5.68172656336782479474723788061, 6.51928663894432697277073329861, 7.69168087572007604559803206004, 9.512095852896473796445619418212, 10.65035641645083176573102091054, 11.47345213889979344343693410613, 12.58566046191863217902228732461, 13.58131506935203673400265372032

Graph of the $Z$-function along the critical line