| L(s) = 1 | + (−1.5 + 0.866i)3-s + (1 − 1.73i)4-s + (1.5 − 2.59i)5-s + (−2 − 3.46i)7-s + (1.5 − 2.59i)9-s + 3.46i·12-s + (1 − 1.73i)13-s + 5.19i·15-s + (−1.99 − 3.46i)16-s + 6·17-s − 2·19-s + (−3 − 5.19i)20-s + (6 + 3.46i)21-s + (−1.5 + 2.59i)23-s + (−2 − 3.46i)25-s + ⋯ |
| L(s) = 1 | + (−0.866 + 0.499i)3-s + (0.5 − 0.866i)4-s + (0.670 − 1.16i)5-s + (−0.755 − 1.30i)7-s + (0.5 − 0.866i)9-s + 0.999i·12-s + (0.277 − 0.480i)13-s + 1.34i·15-s + (−0.499 − 0.866i)16-s + 1.45·17-s − 0.458·19-s + (−0.670 − 1.16i)20-s + (1.30 + 0.755i)21-s + (−0.312 + 0.541i)23-s + (−0.400 − 0.692i)25-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1089 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.766 + 0.642i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1089 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.766 + 0.642i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.250907722\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.250907722\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 + (1.5 - 0.866i)T \) |
| 11 | \( 1 \) |
| good | 2 | \( 1 + (-1 + 1.73i)T^{2} \) |
| 5 | \( 1 + (-1.5 + 2.59i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (2 + 3.46i)T + (-3.5 + 6.06i)T^{2} \) |
| 13 | \( 1 + (-1 + 1.73i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 - 6T + 17T^{2} \) |
| 19 | \( 1 + 2T + 19T^{2} \) |
| 23 | \( 1 + (1.5 - 2.59i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (3 + 5.19i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (4 - 6.92i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 2T + 37T^{2} \) |
| 41 | \( 1 + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-4 - 6.92i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (1.5 + 2.59i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 3T + 53T^{2} \) |
| 59 | \( 1 + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-4 - 6.92i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-6.5 + 11.2i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 71T^{2} \) |
| 73 | \( 1 + 2T + 73T^{2} \) |
| 79 | \( 1 + (-1 - 1.73i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (9 + 15.5i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 - 3T + 89T^{2} \) |
| 97 | \( 1 + (1 + 1.73i)T + (-48.5 + 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.822530052921661474063983715084, −9.147821411631672704018238075976, −7.73451639878917837771893450548, −6.79880729800116557526685028578, −5.89495618512608948460977217050, −5.45146433141669859431636896111, −4.48274017825728164068103373565, −3.43411460564651078515139306897, −1.45549053258398279060303361624, −0.63347067911613628278675938508,
2.02431126083823944821201004719, 2.71117665941221349499080263443, 3.79998674222148296345970343300, 5.51986462890076320052159381974, 6.06870112427556802797557661176, 6.73679393618040105307303390248, 7.42370886448027155827423725067, 8.433566841038936634568112371419, 9.484835208256931200219169708044, 10.31236320986253739819206566823