| L(s) = 1 | + 3·2-s + 4·4-s − 5-s − 2·7-s + 3·8-s − 3·10-s − 4·13-s − 6·14-s + 3·16-s + 9·17-s + 5·19-s − 4·20-s + 4·23-s − 8·25-s − 12·26-s − 8·28-s + 12·29-s − 31-s + 6·32-s + 27·34-s + 2·35-s − 8·37-s + 15·38-s − 3·40-s + 4·41-s + 12·46-s + 9·47-s + ⋯ |
| L(s) = 1 | + 2.12·2-s + 2·4-s − 0.447·5-s − 0.755·7-s + 1.06·8-s − 0.948·10-s − 1.10·13-s − 1.60·14-s + 3/4·16-s + 2.18·17-s + 1.14·19-s − 0.894·20-s + 0.834·23-s − 8/5·25-s − 2.35·26-s − 1.51·28-s + 2.22·29-s − 0.179·31-s + 1.06·32-s + 4.63·34-s + 0.338·35-s − 1.31·37-s + 2.43·38-s − 0.474·40-s + 0.624·41-s + 1.76·46-s + 1.31·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1185921 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1185921 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(5.443253550\) |
| \(L(\frac12)\) |
\(\approx\) |
\(5.443253550\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.14857687323640458070806657472, −9.810206682881451836354678752098, −9.168084567698295555309271447297, −9.154018537885521861521306796922, −8.060283860149454633022001357399, −7.79984322600123080268866465916, −7.62291945162226335947574846943, −7.05773190493427797799574538686, −6.43985475898287988206672321166, −6.17509592723152359241586316877, −5.50854143133989056738374764122, −5.36748558817282313995227844588, −4.71508052510387465339825702949, −4.66588366010918778643755879386, −3.68373839018247499821777243935, −3.63017055291950575811495136813, −2.96283532031148272585072372559, −2.84625615125432410153973702590, −1.70620894248544252523116471375, −0.76025839619993834923995410622,
0.76025839619993834923995410622, 1.70620894248544252523116471375, 2.84625615125432410153973702590, 2.96283532031148272585072372559, 3.63017055291950575811495136813, 3.68373839018247499821777243935, 4.66588366010918778643755879386, 4.71508052510387465339825702949, 5.36748558817282313995227844588, 5.50854143133989056738374764122, 6.17509592723152359241586316877, 6.43985475898287988206672321166, 7.05773190493427797799574538686, 7.62291945162226335947574846943, 7.79984322600123080268866465916, 8.060283860149454633022001357399, 9.154018537885521861521306796922, 9.168084567698295555309271447297, 9.810206682881451836354678752098, 10.14857687323640458070806657472