Properties

Label 2-1088-1.1-c3-0-67
Degree $2$
Conductor $1088$
Sign $1$
Analytic cond. $64.1940$
Root an. cond. $8.01212$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7.62·3-s + 11.9·5-s + 26.1·7-s + 31.2·9-s + 3.24·11-s + 20.0·13-s + 90.9·15-s − 17·17-s − 57.3·19-s + 199.·21-s + 77.0·23-s + 17.0·25-s + 32.1·27-s + 286.·29-s − 8.54·31-s + 24.7·33-s + 311.·35-s − 357.·37-s + 152.·39-s + 194.·41-s + 74.2·43-s + 372.·45-s + 23.6·47-s + 339.·49-s − 129.·51-s − 104.·53-s + 38.6·55-s + ⋯
L(s)  = 1  + 1.46·3-s + 1.06·5-s + 1.41·7-s + 1.15·9-s + 0.0889·11-s + 0.427·13-s + 1.56·15-s − 0.242·17-s − 0.692·19-s + 2.07·21-s + 0.698·23-s + 0.136·25-s + 0.229·27-s + 1.83·29-s − 0.0495·31-s + 0.130·33-s + 1.50·35-s − 1.59·37-s + 0.628·39-s + 0.740·41-s + 0.263·43-s + 1.23·45-s + 0.0732·47-s + 0.989·49-s − 0.356·51-s − 0.270·53-s + 0.0947·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1088 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1088 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1088\)    =    \(2^{6} \cdot 17\)
Sign: $1$
Analytic conductor: \(64.1940\)
Root analytic conductor: \(8.01212\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1088,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(5.563567352\)
\(L(\frac12)\) \(\approx\) \(5.563567352\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
17 \( 1 + 17T \)
good3 \( 1 - 7.62T + 27T^{2} \)
5 \( 1 - 11.9T + 125T^{2} \)
7 \( 1 - 26.1T + 343T^{2} \)
11 \( 1 - 3.24T + 1.33e3T^{2} \)
13 \( 1 - 20.0T + 2.19e3T^{2} \)
19 \( 1 + 57.3T + 6.85e3T^{2} \)
23 \( 1 - 77.0T + 1.21e4T^{2} \)
29 \( 1 - 286.T + 2.43e4T^{2} \)
31 \( 1 + 8.54T + 2.97e4T^{2} \)
37 \( 1 + 357.T + 5.06e4T^{2} \)
41 \( 1 - 194.T + 6.89e4T^{2} \)
43 \( 1 - 74.2T + 7.95e4T^{2} \)
47 \( 1 - 23.6T + 1.03e5T^{2} \)
53 \( 1 + 104.T + 1.48e5T^{2} \)
59 \( 1 + 249.T + 2.05e5T^{2} \)
61 \( 1 - 370.T + 2.26e5T^{2} \)
67 \( 1 + 939.T + 3.00e5T^{2} \)
71 \( 1 + 520.T + 3.57e5T^{2} \)
73 \( 1 - 348.T + 3.89e5T^{2} \)
79 \( 1 + 953.T + 4.93e5T^{2} \)
83 \( 1 - 1.41e3T + 5.71e5T^{2} \)
89 \( 1 + 486.T + 7.04e5T^{2} \)
97 \( 1 + 685.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.217622548239410746129922983400, −8.667975749755592732467941930769, −8.122567726213881924064891639277, −7.17720604109603494090984520249, −6.13792496312166487579460444974, −5.04708568815336146461729240936, −4.18911549362245743790378678935, −2.94877686275764844642189462970, −2.07348301063855394971599999847, −1.34867793004962149981114150939, 1.34867793004962149981114150939, 2.07348301063855394971599999847, 2.94877686275764844642189462970, 4.18911549362245743790378678935, 5.04708568815336146461729240936, 6.13792496312166487579460444974, 7.17720604109603494090984520249, 8.122567726213881924064891639277, 8.667975749755592732467941930769, 9.217622548239410746129922983400

Graph of the $Z$-function along the critical line