Properties

Label 4-1088e2-1.1-c1e2-0-9
Degree $4$
Conductor $1183744$
Sign $1$
Analytic cond. $75.4765$
Root an. cond. $2.94749$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 2·7-s − 6·11-s − 4·13-s − 2·17-s + 4·19-s + 4·21-s + 6·23-s + 2·25-s − 2·27-s + 2·31-s − 12·33-s − 16·37-s − 8·39-s − 12·41-s + 4·43-s − 8·49-s − 4·51-s − 12·53-s + 8·57-s + 12·59-s + 8·61-s + 16·67-s + 12·69-s + 6·71-s + 4·73-s + 4·75-s + ⋯
L(s)  = 1  + 1.15·3-s + 0.755·7-s − 1.80·11-s − 1.10·13-s − 0.485·17-s + 0.917·19-s + 0.872·21-s + 1.25·23-s + 2/5·25-s − 0.384·27-s + 0.359·31-s − 2.08·33-s − 2.63·37-s − 1.28·39-s − 1.87·41-s + 0.609·43-s − 8/7·49-s − 0.560·51-s − 1.64·53-s + 1.05·57-s + 1.56·59-s + 1.02·61-s + 1.95·67-s + 1.44·69-s + 0.712·71-s + 0.468·73-s + 0.461·75-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1183744 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1183744 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1183744\)    =    \(2^{12} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(75.4765\)
Root analytic conductor: \(2.94749\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1183744,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.319698624\)
\(L(\frac12)\) \(\approx\) \(2.319698624\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
17$C_1$ \( ( 1 + T )^{2} \)
good3$D_{4}$ \( 1 - 2 T + 4 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
5$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
7$D_{4}$ \( 1 - 2 T + 12 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
11$D_{4}$ \( 1 + 6 T + 28 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
13$D_{4}$ \( 1 + 4 T + 18 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
19$D_{4}$ \( 1 - 4 T + 30 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
23$D_{4}$ \( 1 - 6 T + 52 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
29$C_2^2$ \( 1 + 46 T^{2} + p^{2} T^{4} \)
31$D_{4}$ \( 1 - 2 T + 36 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
37$D_{4}$ \( 1 + 16 T + 126 T^{2} + 16 p T^{3} + p^{2} T^{4} \)
41$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
43$D_{4}$ \( 1 - 4 T - 18 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
47$C_2^2$ \( 1 + 46 T^{2} + p^{2} T^{4} \)
53$D_{4}$ \( 1 + 12 T + 94 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
59$D_{4}$ \( 1 - 12 T + 142 T^{2} - 12 p T^{3} + p^{2} T^{4} \)
61$D_{4}$ \( 1 - 8 T + 126 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
67$D_{4}$ \( 1 - 16 T + 150 T^{2} - 16 p T^{3} + p^{2} T^{4} \)
71$D_{4}$ \( 1 - 6 T + 124 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
73$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
79$D_{4}$ \( 1 - 14 T + 180 T^{2} - 14 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 + 12 T + 190 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
89$D_{4}$ \( 1 - 12 T + 202 T^{2} - 12 p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 - 4 T + 150 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.06568055112947454578800609571, −9.711697319825631725390397653390, −9.093719552804831514940715237480, −8.770908234888405638304989285304, −8.321619323640742835079424426267, −8.220642794620788386503302674655, −7.56366648465131126711685281820, −7.44599551055561857195532579541, −6.71303151046301222463820761184, −6.62249290870410303000612414614, −5.40275666838476630385164389814, −5.36199608195030022707353505965, −4.80362808321825323764039736383, −4.76722512150068504889724608070, −3.49952373717517545902107802904, −3.34189242308796861147881147307, −2.82916408279423896461630018632, −2.17437638900435866349219462895, −1.90853919242954552946609169359, −0.60223030651800219820213822827, 0.60223030651800219820213822827, 1.90853919242954552946609169359, 2.17437638900435866349219462895, 2.82916408279423896461630018632, 3.34189242308796861147881147307, 3.49952373717517545902107802904, 4.76722512150068504889724608070, 4.80362808321825323764039736383, 5.36199608195030022707353505965, 5.40275666838476630385164389814, 6.62249290870410303000612414614, 6.71303151046301222463820761184, 7.44599551055561857195532579541, 7.56366648465131126711685281820, 8.220642794620788386503302674655, 8.321619323640742835079424426267, 8.770908234888405638304989285304, 9.093719552804831514940715237480, 9.711697319825631725390397653390, 10.06568055112947454578800609571

Graph of the $Z$-function along the critical line