Properties

Label 2-1080-1.1-c5-0-8
Degree $2$
Conductor $1080$
Sign $1$
Analytic cond. $173.214$
Root an. cond. $13.1610$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 25·5-s + 61.7·7-s − 218.·11-s − 864.·13-s − 521.·17-s − 1.45e3·19-s − 4.92e3·23-s + 625·25-s + 5.66e3·29-s − 2.98e3·31-s − 1.54e3·35-s − 110.·37-s + 2.41e3·41-s + 1.35e4·43-s + 1.52e4·47-s − 1.29e4·49-s − 1.04e4·53-s + 5.45e3·55-s + 3.17e4·59-s − 2.80e4·61-s + 2.16e4·65-s − 1.78e4·67-s + 3.67e4·71-s − 4.97e4·73-s − 1.34e4·77-s + 8.19e4·79-s − 9.74e4·83-s + ⋯
L(s)  = 1  − 0.447·5-s + 0.476·7-s − 0.544·11-s − 1.41·13-s − 0.437·17-s − 0.925·19-s − 1.94·23-s + 0.200·25-s + 1.25·29-s − 0.557·31-s − 0.212·35-s − 0.0132·37-s + 0.224·41-s + 1.12·43-s + 1.00·47-s − 0.773·49-s − 0.513·53-s + 0.243·55-s + 1.18·59-s − 0.966·61-s + 0.634·65-s − 0.487·67-s + 0.865·71-s − 1.09·73-s − 0.259·77-s + 1.47·79-s − 1.55·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1080 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1080\)    =    \(2^{3} \cdot 3^{3} \cdot 5\)
Sign: $1$
Analytic conductor: \(173.214\)
Root analytic conductor: \(13.1610\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1080,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.9751682872\)
\(L(\frac12)\) \(\approx\) \(0.9751682872\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + 25T \)
good7 \( 1 - 61.7T + 1.68e4T^{2} \)
11 \( 1 + 218.T + 1.61e5T^{2} \)
13 \( 1 + 864.T + 3.71e5T^{2} \)
17 \( 1 + 521.T + 1.41e6T^{2} \)
19 \( 1 + 1.45e3T + 2.47e6T^{2} \)
23 \( 1 + 4.92e3T + 6.43e6T^{2} \)
29 \( 1 - 5.66e3T + 2.05e7T^{2} \)
31 \( 1 + 2.98e3T + 2.86e7T^{2} \)
37 \( 1 + 110.T + 6.93e7T^{2} \)
41 \( 1 - 2.41e3T + 1.15e8T^{2} \)
43 \( 1 - 1.35e4T + 1.47e8T^{2} \)
47 \( 1 - 1.52e4T + 2.29e8T^{2} \)
53 \( 1 + 1.04e4T + 4.18e8T^{2} \)
59 \( 1 - 3.17e4T + 7.14e8T^{2} \)
61 \( 1 + 2.80e4T + 8.44e8T^{2} \)
67 \( 1 + 1.78e4T + 1.35e9T^{2} \)
71 \( 1 - 3.67e4T + 1.80e9T^{2} \)
73 \( 1 + 4.97e4T + 2.07e9T^{2} \)
79 \( 1 - 8.19e4T + 3.07e9T^{2} \)
83 \( 1 + 9.74e4T + 3.93e9T^{2} \)
89 \( 1 - 1.81e4T + 5.58e9T^{2} \)
97 \( 1 - 4.58e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.107035982932696779294762138359, −8.149839599418389511038569327749, −7.66535795887336683356050990195, −6.71525733074551654870431487595, −5.70942281304417575380547189069, −4.69785180096006452000372907832, −4.09742521654689651168480830288, −2.70514692304616837714073436936, −1.94149230544641305632542682824, −0.40236643327620184646604400456, 0.40236643327620184646604400456, 1.94149230544641305632542682824, 2.70514692304616837714073436936, 4.09742521654689651168480830288, 4.69785180096006452000372907832, 5.70942281304417575380547189069, 6.71525733074551654870431487595, 7.66535795887336683356050990195, 8.149839599418389511038569327749, 9.107035982932696779294762138359

Graph of the $Z$-function along the critical line