Properties

Label 2-1080-1.1-c3-0-37
Degree $2$
Conductor $1080$
Sign $-1$
Analytic cond. $63.7220$
Root an. cond. $7.98261$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5·5-s + 10.2·7-s + 44.3·11-s − 50.8·13-s − 25.2·17-s − 31.3·19-s − 76.1·23-s + 25·25-s − 156.·29-s + 134.·31-s − 51.2·35-s + 81.2·37-s − 326.·41-s + 422.·43-s + 452.·47-s − 237.·49-s − 98.1·53-s − 221.·55-s − 540.·59-s + 522.·61-s + 254.·65-s − 129.·67-s − 26.6·71-s − 147.·73-s + 454.·77-s − 1.08e3·79-s − 594.·83-s + ⋯
L(s)  = 1  − 0.447·5-s + 0.553·7-s + 1.21·11-s − 1.08·13-s − 0.360·17-s − 0.378·19-s − 0.690·23-s + 0.200·25-s − 0.998·29-s + 0.779·31-s − 0.247·35-s + 0.360·37-s − 1.24·41-s + 1.49·43-s + 1.40·47-s − 0.693·49-s − 0.254·53-s − 0.543·55-s − 1.19·59-s + 1.09·61-s + 0.485·65-s − 0.235·67-s − 0.0444·71-s − 0.237·73-s + 0.673·77-s − 1.55·79-s − 0.786·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1080 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1080\)    =    \(2^{3} \cdot 3^{3} \cdot 5\)
Sign: $-1$
Analytic conductor: \(63.7220\)
Root analytic conductor: \(7.98261\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1080,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + 5T \)
good7 \( 1 - 10.2T + 343T^{2} \)
11 \( 1 - 44.3T + 1.33e3T^{2} \)
13 \( 1 + 50.8T + 2.19e3T^{2} \)
17 \( 1 + 25.2T + 4.91e3T^{2} \)
19 \( 1 + 31.3T + 6.85e3T^{2} \)
23 \( 1 + 76.1T + 1.21e4T^{2} \)
29 \( 1 + 156.T + 2.43e4T^{2} \)
31 \( 1 - 134.T + 2.97e4T^{2} \)
37 \( 1 - 81.2T + 5.06e4T^{2} \)
41 \( 1 + 326.T + 6.89e4T^{2} \)
43 \( 1 - 422.T + 7.95e4T^{2} \)
47 \( 1 - 452.T + 1.03e5T^{2} \)
53 \( 1 + 98.1T + 1.48e5T^{2} \)
59 \( 1 + 540.T + 2.05e5T^{2} \)
61 \( 1 - 522.T + 2.26e5T^{2} \)
67 \( 1 + 129.T + 3.00e5T^{2} \)
71 \( 1 + 26.6T + 3.57e5T^{2} \)
73 \( 1 + 147.T + 3.89e5T^{2} \)
79 \( 1 + 1.08e3T + 4.93e5T^{2} \)
83 \( 1 + 594.T + 5.71e5T^{2} \)
89 \( 1 + 592.T + 7.04e5T^{2} \)
97 \( 1 + 666.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.090271910952361097630041833846, −8.244454219238424877829273025447, −7.43053671639416948890301419574, −6.66623303075969103707152799338, −5.64878640367013704726108530694, −4.53529842478448284118445245390, −3.94250200854100507966225688440, −2.58239635113802501202783668781, −1.43565528541890746349950462974, 0, 1.43565528541890746349950462974, 2.58239635113802501202783668781, 3.94250200854100507966225688440, 4.53529842478448284118445245390, 5.64878640367013704726108530694, 6.66623303075969103707152799338, 7.43053671639416948890301419574, 8.244454219238424877829273025447, 9.090271910952361097630041833846

Graph of the $Z$-function along the critical line