Properties

Label 2-1080-1.1-c3-0-5
Degree $2$
Conductor $1080$
Sign $1$
Analytic cond. $63.7220$
Root an. cond. $7.98261$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5·5-s − 14.4·7-s + 13.9·11-s − 38.8·13-s − 126.·17-s + 60.5·19-s + 50.3·23-s + 25·25-s − 71.3·29-s − 28.7·31-s + 72.4·35-s + 76.6·37-s + 396.·41-s − 351.·43-s − 4.16·47-s − 133.·49-s + 171.·53-s − 69.7·55-s + 116.·59-s + 523.·61-s + 194.·65-s − 872.·67-s + 802.·71-s − 13.5·73-s − 201.·77-s + 597.·79-s + 75.9·83-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.781·7-s + 0.382·11-s − 0.828·13-s − 1.79·17-s + 0.731·19-s + 0.456·23-s + 0.200·25-s − 0.456·29-s − 0.166·31-s + 0.349·35-s + 0.340·37-s + 1.50·41-s − 1.24·43-s − 0.0129·47-s − 0.388·49-s + 0.445·53-s − 0.170·55-s + 0.257·59-s + 1.09·61-s + 0.370·65-s − 1.59·67-s + 1.34·71-s − 0.0216·73-s − 0.298·77-s + 0.851·79-s + 0.100·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1080 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1080\)    =    \(2^{3} \cdot 3^{3} \cdot 5\)
Sign: $1$
Analytic conductor: \(63.7220\)
Root analytic conductor: \(7.98261\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1080,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.169492942\)
\(L(\frac12)\) \(\approx\) \(1.169492942\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + 5T \)
good7 \( 1 + 14.4T + 343T^{2} \)
11 \( 1 - 13.9T + 1.33e3T^{2} \)
13 \( 1 + 38.8T + 2.19e3T^{2} \)
17 \( 1 + 126.T + 4.91e3T^{2} \)
19 \( 1 - 60.5T + 6.85e3T^{2} \)
23 \( 1 - 50.3T + 1.21e4T^{2} \)
29 \( 1 + 71.3T + 2.43e4T^{2} \)
31 \( 1 + 28.7T + 2.97e4T^{2} \)
37 \( 1 - 76.6T + 5.06e4T^{2} \)
41 \( 1 - 396.T + 6.89e4T^{2} \)
43 \( 1 + 351.T + 7.95e4T^{2} \)
47 \( 1 + 4.16T + 1.03e5T^{2} \)
53 \( 1 - 171.T + 1.48e5T^{2} \)
59 \( 1 - 116.T + 2.05e5T^{2} \)
61 \( 1 - 523.T + 2.26e5T^{2} \)
67 \( 1 + 872.T + 3.00e5T^{2} \)
71 \( 1 - 802.T + 3.57e5T^{2} \)
73 \( 1 + 13.5T + 3.89e5T^{2} \)
79 \( 1 - 597.T + 4.93e5T^{2} \)
83 \( 1 - 75.9T + 5.71e5T^{2} \)
89 \( 1 - 799.T + 7.04e5T^{2} \)
97 \( 1 - 445.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.390169818893859284987885855378, −8.865275152032340776625911800406, −7.73444377317747625784313189391, −6.96763906413348885763739451779, −6.29185566504135210752834278145, −5.09757564732186598933390165989, −4.21435411314212050572730509551, −3.22063804103471025239991673774, −2.16498507685419549847179997503, −0.54481606115123228595255219766, 0.54481606115123228595255219766, 2.16498507685419549847179997503, 3.22063804103471025239991673774, 4.21435411314212050572730509551, 5.09757564732186598933390165989, 6.29185566504135210752834278145, 6.96763906413348885763739451779, 7.73444377317747625784313189391, 8.865275152032340776625911800406, 9.390169818893859284987885855378

Graph of the $Z$-function along the critical line