Properties

Label 2-1080-1.1-c3-0-2
Degree $2$
Conductor $1080$
Sign $1$
Analytic cond. $63.7220$
Root an. cond. $7.98261$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5·5-s − 21.1·7-s − 67.4·11-s + 2.55·13-s + 126.·17-s − 103.·19-s − 200.·23-s + 25·25-s + 71.4·29-s − 158.·31-s + 105.·35-s + 7.18·37-s − 347.·41-s + 189.·43-s + 585.·47-s + 104.·49-s + 77.2·53-s + 337.·55-s + 200.·59-s + 681.·61-s − 12.7·65-s − 810.·67-s + 515.·71-s + 385.·73-s + 1.42e3·77-s − 209.·79-s + 887.·83-s + ⋯
L(s)  = 1  − 0.447·5-s − 1.14·7-s − 1.84·11-s + 0.0545·13-s + 1.79·17-s − 1.25·19-s − 1.81·23-s + 0.200·25-s + 0.457·29-s − 0.916·31-s + 0.510·35-s + 0.0319·37-s − 1.32·41-s + 0.671·43-s + 1.81·47-s + 0.303·49-s + 0.200·53-s + 0.826·55-s + 0.443·59-s + 1.42·61-s − 0.0243·65-s − 1.47·67-s + 0.861·71-s + 0.618·73-s + 2.11·77-s − 0.298·79-s + 1.17·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1080 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1080\)    =    \(2^{3} \cdot 3^{3} \cdot 5\)
Sign: $1$
Analytic conductor: \(63.7220\)
Root analytic conductor: \(7.98261\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1080,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.7512355028\)
\(L(\frac12)\) \(\approx\) \(0.7512355028\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + 5T \)
good7 \( 1 + 21.1T + 343T^{2} \)
11 \( 1 + 67.4T + 1.33e3T^{2} \)
13 \( 1 - 2.55T + 2.19e3T^{2} \)
17 \( 1 - 126.T + 4.91e3T^{2} \)
19 \( 1 + 103.T + 6.85e3T^{2} \)
23 \( 1 + 200.T + 1.21e4T^{2} \)
29 \( 1 - 71.4T + 2.43e4T^{2} \)
31 \( 1 + 158.T + 2.97e4T^{2} \)
37 \( 1 - 7.18T + 5.06e4T^{2} \)
41 \( 1 + 347.T + 6.89e4T^{2} \)
43 \( 1 - 189.T + 7.95e4T^{2} \)
47 \( 1 - 585.T + 1.03e5T^{2} \)
53 \( 1 - 77.2T + 1.48e5T^{2} \)
59 \( 1 - 200.T + 2.05e5T^{2} \)
61 \( 1 - 681.T + 2.26e5T^{2} \)
67 \( 1 + 810.T + 3.00e5T^{2} \)
71 \( 1 - 515.T + 3.57e5T^{2} \)
73 \( 1 - 385.T + 3.89e5T^{2} \)
79 \( 1 + 209.T + 4.93e5T^{2} \)
83 \( 1 - 887.T + 5.71e5T^{2} \)
89 \( 1 + 548.T + 7.04e5T^{2} \)
97 \( 1 + 1.52e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.748664906283762681329668846998, −8.483441629752292970314887904792, −7.897674400161856714997380198595, −7.09860469169820502842328413137, −5.98732030337459700748122718794, −5.37343807838933192166919503595, −4.07454627461162653936112310997, −3.21959099103092146186817768481, −2.24109205251728923152830859612, −0.42664915158308489977791598156, 0.42664915158308489977791598156, 2.24109205251728923152830859612, 3.21959099103092146186817768481, 4.07454627461162653936112310997, 5.37343807838933192166919503595, 5.98732030337459700748122718794, 7.09860469169820502842328413137, 7.897674400161856714997380198595, 8.483441629752292970314887904792, 9.748664906283762681329668846998

Graph of the $Z$-function along the critical line