Properties

Degree 2
Conductor $ 2^{2} \cdot 3^{3} $
Sign $0.996 + 0.0813i$
Motivic weight 5
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (−3.95 − 4.04i)2-s + (−0.713 + 31.9i)4-s + (77.8 − 44.9i)5-s + (124. + 71.6i)7-s + (132. − 123. i)8-s + (−489. − 137. i)10-s + (−278. + 481. i)11-s + (179. + 311. i)13-s + (−200. − 784. i)14-s + (−1.02e3 − 45.6i)16-s + 1.07e3i·17-s + 348. i·19-s + (1.38e3 + 2.52e3i)20-s + (3.04e3 − 780. i)22-s + (1.46e3 + 2.54e3i)23-s + ⋯
L(s)  = 1  + (−0.699 − 0.714i)2-s + (−0.0223 + 0.999i)4-s + (1.39 − 0.803i)5-s + (0.956 + 0.552i)7-s + (0.730 − 0.683i)8-s + (−1.54 − 0.433i)10-s + (−0.693 + 1.20i)11-s + (0.295 + 0.511i)13-s + (−0.274 − 1.07i)14-s + (−0.999 − 0.0445i)16-s + 0.903i·17-s + 0.221i·19-s + (0.772 + 1.40i)20-s + (1.34 − 0.343i)22-s + (0.579 + 1.00i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 108 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.996 + 0.0813i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 108 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.996 + 0.0813i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(108\)    =    \(2^{2} \cdot 3^{3}\)
\( \varepsilon \)  =  $0.996 + 0.0813i$
motivic weight  =  \(5\)
character  :  $\chi_{108} (35, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  \(0\)
Selberg data  =  \((2,\ 108,\ (\ :5/2),\ 0.996 + 0.0813i)\)
\(L(3)\)  \(\approx\)  \(1.75992 - 0.0717116i\)
\(L(\frac12)\)  \(\approx\)  \(1.75992 - 0.0717116i\)
\(L(\frac{7}{2})\)   not available
\(L(1)\)   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;3\}$,\(F_p(T)\) is a polynomial of degree 2. If $p \in \{2,\;3\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 + (3.95 + 4.04i)T \)
3 \( 1 \)
good5 \( 1 + (-77.8 + 44.9i)T + (1.56e3 - 2.70e3i)T^{2} \)
7 \( 1 + (-124. - 71.6i)T + (8.40e3 + 1.45e4i)T^{2} \)
11 \( 1 + (278. - 481. i)T + (-8.05e4 - 1.39e5i)T^{2} \)
13 \( 1 + (-179. - 311. i)T + (-1.85e5 + 3.21e5i)T^{2} \)
17 \( 1 - 1.07e3iT - 1.41e6T^{2} \)
19 \( 1 - 348. iT - 2.47e6T^{2} \)
23 \( 1 + (-1.46e3 - 2.54e3i)T + (-3.21e6 + 5.57e6i)T^{2} \)
29 \( 1 + (3.33e3 + 1.92e3i)T + (1.02e7 + 1.77e7i)T^{2} \)
31 \( 1 + (-2.34e3 + 1.35e3i)T + (1.43e7 - 2.47e7i)T^{2} \)
37 \( 1 + 1.99e3T + 6.93e7T^{2} \)
41 \( 1 + (-1.34e4 + 7.75e3i)T + (5.79e7 - 1.00e8i)T^{2} \)
43 \( 1 + (-1.24e4 - 7.20e3i)T + (7.35e7 + 1.27e8i)T^{2} \)
47 \( 1 + (1.23e3 - 2.13e3i)T + (-1.14e8 - 1.98e8i)T^{2} \)
53 \( 1 + 1.33e4iT - 4.18e8T^{2} \)
59 \( 1 + (-1.98e4 - 3.44e4i)T + (-3.57e8 + 6.19e8i)T^{2} \)
61 \( 1 + (211. - 366. i)T + (-4.22e8 - 7.31e8i)T^{2} \)
67 \( 1 + (1.40e4 - 8.09e3i)T + (6.75e8 - 1.16e9i)T^{2} \)
71 \( 1 + 6.90e3T + 1.80e9T^{2} \)
73 \( 1 + 1.10e4T + 2.07e9T^{2} \)
79 \( 1 + (6.43e4 + 3.71e4i)T + (1.53e9 + 2.66e9i)T^{2} \)
83 \( 1 + (-4.85e4 + 8.41e4i)T + (-1.96e9 - 3.41e9i)T^{2} \)
89 \( 1 + 7.44e4iT - 5.58e9T^{2} \)
97 \( 1 + (-4.79e4 + 8.30e4i)T + (-4.29e9 - 7.43e9i)T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−12.73334515368172435774187132775, −11.65304180724481226515367017442, −10.44816804685522352747795682502, −9.513505863265079625061171698959, −8.730993400932568307233669673408, −7.54910267459349732471141258095, −5.72234563306014749539855594612, −4.49031031806499159362422350878, −2.20948710202923098131963166625, −1.48226937676738524784292063875, 0.933796238663248751213157208023, 2.57433311663580420957751323096, 5.11024383751042879637530076193, 6.05139134722502250367289623008, 7.21292559600386321157430566841, 8.355415480592742916614260375722, 9.512129669852002111343424540989, 10.74789544064475819697141926828, 10.94997190413515838418631979033, 13.29108366062211461278075377345

Graph of the $Z$-function along the critical line