# Properties

 Degree 2 Conductor $2^{2} \cdot 3^{3}$ Sign $0.798 - 0.602i$ Motivic weight 5 Primitive yes Self-dual no Analytic rank 0

# Learn more about

## Dirichlet series

 L(s)  = 1 + (−1.72 − 5.38i)2-s + (−26.0 + 18.5i)4-s + (20.1 − 11.6i)5-s + (−156. − 90.5i)7-s + (145. + 108. i)8-s + (−97.4 − 88.4i)10-s + (−41.2 + 71.4i)11-s + (−70.1 − 121. i)13-s + (−217. + 1.00e3i)14-s + (332. − 968. i)16-s + 901. i·17-s + 2.36e3i·19-s + (−308. + 677. i)20-s + (456. + 98.9i)22-s + (−160. − 277. i)23-s + ⋯
 L(s)  = 1 + (−0.305 − 0.952i)2-s + (−0.813 + 0.581i)4-s + (0.360 − 0.208i)5-s + (−1.20 − 0.698i)7-s + (0.801 + 0.597i)8-s + (−0.308 − 0.279i)10-s + (−0.102 + 0.178i)11-s + (−0.115 − 0.199i)13-s + (−0.296 + 1.36i)14-s + (0.324 − 0.945i)16-s + 0.756i·17-s + 1.50i·19-s + (−0.172 + 0.378i)20-s + (0.200 + 0.0435i)22-s + (−0.0631 − 0.109i)23-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 108 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.798 - 0.602i)\, \overline{\Lambda}(6-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 108 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.798 - 0.602i)\, \overline{\Lambda}(1-s) \end{aligned}

## Invariants

 $$d$$ = $$2$$ $$N$$ = $$108$$    =    $$2^{2} \cdot 3^{3}$$ $$\varepsilon$$ = $0.798 - 0.602i$ motivic weight = $$5$$ character : $\chi_{108} (35, \cdot )$ primitive : yes self-dual : no analytic rank = $$0$$ Selberg data = $$(2,\ 108,\ (\ :5/2),\ 0.798 - 0.602i)$$ $$L(3)$$ $$\approx$$ $$0.714512 + 0.239257i$$ $$L(\frac12)$$ $$\approx$$ $$0.714512 + 0.239257i$$ $$L(\frac{7}{2})$$ not available $$L(1)$$ not available

## Euler product

$L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1}$where, for $p \notin \{2,\;3\}$,$$F_p(T)$$ is a polynomial of degree 2. If $p \in \{2,\;3\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 $$1 + (1.72 + 5.38i)T$$
3 $$1$$
good5 $$1 + (-20.1 + 11.6i)T + (1.56e3 - 2.70e3i)T^{2}$$
7 $$1 + (156. + 90.5i)T + (8.40e3 + 1.45e4i)T^{2}$$
11 $$1 + (41.2 - 71.4i)T + (-8.05e4 - 1.39e5i)T^{2}$$
13 $$1 + (70.1 + 121. i)T + (-1.85e5 + 3.21e5i)T^{2}$$
17 $$1 - 901. iT - 1.41e6T^{2}$$
19 $$1 - 2.36e3iT - 2.47e6T^{2}$$
23 $$1 + (160. + 277. i)T + (-3.21e6 + 5.57e6i)T^{2}$$
29 $$1 + (-7.03e3 - 4.06e3i)T + (1.02e7 + 1.77e7i)T^{2}$$
31 $$1 + (-1.53e3 + 885. i)T + (1.43e7 - 2.47e7i)T^{2}$$
37 $$1 - 1.37e4T + 6.93e7T^{2}$$
41 $$1 + (-4.37e3 + 2.52e3i)T + (5.79e7 - 1.00e8i)T^{2}$$
43 $$1 + (1.72e4 + 9.96e3i)T + (7.35e7 + 1.27e8i)T^{2}$$
47 $$1 + (6.62e3 - 1.14e4i)T + (-1.14e8 - 1.98e8i)T^{2}$$
53 $$1 - 2.50e4iT - 4.18e8T^{2}$$
59 $$1 + (-2.01e4 - 3.49e4i)T + (-3.57e8 + 6.19e8i)T^{2}$$
61 $$1 + (8.93e3 - 1.54e4i)T + (-4.22e8 - 7.31e8i)T^{2}$$
67 $$1 + (2.90e4 - 1.67e4i)T + (6.75e8 - 1.16e9i)T^{2}$$
71 $$1 + 5.58e4T + 1.80e9T^{2}$$
73 $$1 + 6.98e4T + 2.07e9T^{2}$$
79 $$1 + (3.30e4 + 1.90e4i)T + (1.53e9 + 2.66e9i)T^{2}$$
83 $$1 + (-1.11e4 + 1.92e4i)T + (-1.96e9 - 3.41e9i)T^{2}$$
89 $$1 + 9.89e4iT - 5.58e9T^{2}$$
97 $$1 + (2.07e4 - 3.59e4i)T + (-4.29e9 - 7.43e9i)T^{2}$$
show more
show less
\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}

## Imaginary part of the first few zeros on the critical line

−12.84205381937850755435312937916, −11.91636834375438758618337146221, −10.36077471346017187359288178730, −10.04200016207399062323609305896, −8.809578808758137382173294646895, −7.53339523235473342093032363392, −5.98275526721216387698574139638, −4.24065513228417341815169729364, −3.04288842832888975110663085132, −1.29720739591191734296375605526, 0.34577560236413882418469056040, 2.76743512704028931539572202865, 4.74292428488645437860306875927, 6.12584850727906281677425692972, 6.80048897382477978420810004660, 8.286976078830759387662938372875, 9.425248688913022236512421287564, 10.00914589946958039875641658208, 11.61368235149391411251545486279, 13.03375311471187094551837559255