Properties

Degree 2
Conductor $ 2^{2} \cdot 3^{3} $
Sign $0.997 - 0.0640i$
Motivic weight 5
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (5.65 − 0.181i)2-s + (31.9 − 2.04i)4-s + 69.1i·5-s − 238. i·7-s + (180. − 17.3i)8-s + (12.5 + 391. i)10-s + 350.·11-s + 669.·13-s + (−43.2 − 1.35e3i)14-s + (1.01e3 − 130. i)16-s + 1.39e3i·17-s + 1.78e3i·19-s + (141. + 2.20e3i)20-s + (1.98e3 − 63.5i)22-s + 1.32e3·23-s + ⋯
L(s)  = 1  + (0.999 − 0.0320i)2-s + (0.997 − 0.0640i)4-s + 1.23i·5-s − 1.84i·7-s + (0.995 − 0.0959i)8-s + (0.0396 + 1.23i)10-s + 0.874·11-s + 1.09·13-s + (−0.0589 − 1.84i)14-s + (0.991 − 0.127i)16-s + 1.17i·17-s + 1.13i·19-s + (0.0792 + 1.23i)20-s + (0.874 − 0.0280i)22-s + 0.521·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 108 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.997 - 0.0640i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 108 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.997 - 0.0640i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(108\)    =    \(2^{2} \cdot 3^{3}\)
\( \varepsilon \)  =  $0.997 - 0.0640i$
motivic weight  =  \(5\)
character  :  $\chi_{108} (107, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  \(0\)
Selberg data  =  \((2,\ 108,\ (\ :5/2),\ 0.997 - 0.0640i)\)
\(L(3)\)  \(\approx\)  \(3.88773 + 0.124540i\)
\(L(\frac12)\)  \(\approx\)  \(3.88773 + 0.124540i\)
\(L(\frac{7}{2})\)   not available
\(L(1)\)   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;3\}$,\(F_p(T)\) is a polynomial of degree 2. If $p \in \{2,\;3\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 + (-5.65 + 0.181i)T \)
3 \( 1 \)
good5 \( 1 - 69.1iT - 3.12e3T^{2} \)
7 \( 1 + 238. iT - 1.68e4T^{2} \)
11 \( 1 - 350.T + 1.61e5T^{2} \)
13 \( 1 - 669.T + 3.71e5T^{2} \)
17 \( 1 - 1.39e3iT - 1.41e6T^{2} \)
19 \( 1 - 1.78e3iT - 2.47e6T^{2} \)
23 \( 1 - 1.32e3T + 6.43e6T^{2} \)
29 \( 1 + 6.89e3iT - 2.05e7T^{2} \)
31 \( 1 + 2.33e3iT - 2.86e7T^{2} \)
37 \( 1 + 1.29e4T + 6.93e7T^{2} \)
41 \( 1 - 8.71e3iT - 1.15e8T^{2} \)
43 \( 1 + 1.06e4iT - 1.47e8T^{2} \)
47 \( 1 + 3.98e3T + 2.29e8T^{2} \)
53 \( 1 + 4.05e3iT - 4.18e8T^{2} \)
59 \( 1 + 2.51e4T + 7.14e8T^{2} \)
61 \( 1 - 8.96e3T + 8.44e8T^{2} \)
67 \( 1 + 1.24e4iT - 1.35e9T^{2} \)
71 \( 1 - 6.50e3T + 1.80e9T^{2} \)
73 \( 1 + 4.58e4T + 2.07e9T^{2} \)
79 \( 1 - 3.74e4iT - 3.07e9T^{2} \)
83 \( 1 + 4.86e4T + 3.93e9T^{2} \)
89 \( 1 + 7.93e3iT - 5.58e9T^{2} \)
97 \( 1 - 5.65e4T + 8.58e9T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−13.07293986350509916374210508499, −11.61871024806270264443372947356, −10.72188787507600999306907467067, −10.20200506554184684945751553126, −7.927718512966526734643578688256, −6.84828809707850081049895324848, −6.15760853036413060387612516541, −4.05675843941955669945100178119, −3.51478916354474711398975880079, −1.46311192804971778677582882493, 1.46142461243087437656755537886, 3.06559961341032869074544483724, 4.80338758885235877119432943017, 5.53513187224664511499429868111, 6.79508224660000946298887067032, 8.671694100271282374246257132383, 9.119820615016479380255199557704, 11.16094294288877333883056731228, 12.01839135867323527563015369908, 12.64146287524481418258946923235

Graph of the $Z$-function along the critical line