Properties

Label 2-108-27.5-c4-0-6
Degree $2$
Conductor $108$
Sign $-0.0515 + 0.998i$
Analytic cond. $11.1639$
Root an. cond. $3.34125$
Motivic weight $4$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−8.89 − 1.37i)3-s + (−1.59 − 4.38i)5-s + (12.9 + 73.5i)7-s + (77.2 + 24.3i)9-s + (54.6 − 150. i)11-s + (−161. − 135. i)13-s + (8.18 + 41.2i)15-s + (−295. − 170. i)17-s + (−169. − 293. i)19-s + (−14.5 − 672. i)21-s + (946. + 166. i)23-s + (462. − 387. i)25-s + (−653. − 322. i)27-s + (−502. − 599. i)29-s + (226. − 1.28e3i)31-s + ⋯
L(s)  = 1  + (−0.988 − 0.152i)3-s + (−0.0638 − 0.175i)5-s + (0.264 + 1.50i)7-s + (0.953 + 0.301i)9-s + (0.451 − 1.24i)11-s + (−0.958 − 0.804i)13-s + (0.0363 + 0.183i)15-s + (−1.02 − 0.589i)17-s + (−0.469 − 0.813i)19-s + (−0.0329 − 1.52i)21-s + (1.78 + 0.315i)23-s + (0.739 − 0.620i)25-s + (−0.896 − 0.442i)27-s + (−0.597 − 0.712i)29-s + (0.235 − 1.33i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 108 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0515 + 0.998i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 108 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (-0.0515 + 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(108\)    =    \(2^{2} \cdot 3^{3}\)
Sign: $-0.0515 + 0.998i$
Analytic conductor: \(11.1639\)
Root analytic conductor: \(3.34125\)
Motivic weight: \(4\)
Rational: no
Arithmetic: yes
Character: $\chi_{108} (5, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 108,\ (\ :2),\ -0.0515 + 0.998i)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(0.595297 - 0.626790i\)
\(L(\frac12)\) \(\approx\) \(0.595297 - 0.626790i\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (8.89 + 1.37i)T \)
good5 \( 1 + (1.59 + 4.38i)T + (-478. + 401. i)T^{2} \)
7 \( 1 + (-12.9 - 73.5i)T + (-2.25e3 + 821. i)T^{2} \)
11 \( 1 + (-54.6 + 150. i)T + (-1.12e4 - 9.41e3i)T^{2} \)
13 \( 1 + (161. + 135. i)T + (4.95e3 + 2.81e4i)T^{2} \)
17 \( 1 + (295. + 170. i)T + (4.17e4 + 7.23e4i)T^{2} \)
19 \( 1 + (169. + 293. i)T + (-6.51e4 + 1.12e5i)T^{2} \)
23 \( 1 + (-946. - 166. i)T + (2.62e5 + 9.57e4i)T^{2} \)
29 \( 1 + (502. + 599. i)T + (-1.22e5 + 6.96e5i)T^{2} \)
31 \( 1 + (-226. + 1.28e3i)T + (-8.67e5 - 3.15e5i)T^{2} \)
37 \( 1 + (611. - 1.05e3i)T + (-9.37e5 - 1.62e6i)T^{2} \)
41 \( 1 + (11.6 - 13.8i)T + (-4.90e5 - 2.78e6i)T^{2} \)
43 \( 1 + (1.61e3 + 588. i)T + (2.61e6 + 2.19e6i)T^{2} \)
47 \( 1 + (-3.75e3 + 661. i)T + (4.58e6 - 1.66e6i)T^{2} \)
53 \( 1 - 850. iT - 7.89e6T^{2} \)
59 \( 1 + (1.07e3 + 2.95e3i)T + (-9.28e6 + 7.78e6i)T^{2} \)
61 \( 1 + (630. + 3.57e3i)T + (-1.30e7 + 4.73e6i)T^{2} \)
67 \( 1 + (-3.08e3 - 2.59e3i)T + (3.49e6 + 1.98e7i)T^{2} \)
71 \( 1 + (-3.90e3 - 2.25e3i)T + (1.27e7 + 2.20e7i)T^{2} \)
73 \( 1 + (2.20e3 + 3.81e3i)T + (-1.41e7 + 2.45e7i)T^{2} \)
79 \( 1 + (6.84e3 - 5.74e3i)T + (6.76e6 - 3.83e7i)T^{2} \)
83 \( 1 + (715. + 852. i)T + (-8.24e6 + 4.67e7i)T^{2} \)
89 \( 1 + (-4.21e3 + 2.43e3i)T + (3.13e7 - 5.43e7i)T^{2} \)
97 \( 1 + (1.29e4 + 4.70e3i)T + (6.78e7 + 5.69e7i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.56684806820280092626098463152, −11.59466450518876336864653213371, −10.99140009204509956429869936887, −9.409913040117524408746984422348, −8.441794911971420261601226530914, −6.87507263696852660192543471058, −5.70169187198458885988075499979, −4.82591431691060632339552442191, −2.57664097029028913549858944824, −0.46288432936274672232661020199, 1.45091755599166005876393808667, 4.09363750430182478059731503004, 4.89734487593129717071217341566, 6.94199746356394310911142847826, 7.08191383321679962960338589498, 9.175015216921376309055879889777, 10.42309015991942333532977922837, 10.92904164681206076712047773079, 12.21602049665371877558797410317, 13.02436898416146522402499186458

Graph of the $Z$-function along the critical line