Properties

Degree 2
Conductor $ 2^{2} \cdot 3^{3} $
Sign $0.0507 + 0.998i$
Motivic weight 4
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.52 − 3.69i)2-s + (−11.3 + 11.2i)4-s + (−11.0 − 19.1i)5-s + (82.7 + 47.7i)7-s + (59.0 + 24.6i)8-s + (−54.0 + 70.2i)10-s + (18.9 + 10.9i)11-s + (−63.1 − 109. i)13-s + (50.2 − 379. i)14-s + (0.961 − 255. i)16-s + 283.·17-s − 323. i·19-s + (342. + 92.3i)20-s + (11.4 − 86.7i)22-s + (−198. + 114. i)23-s + ⋯
L(s)  = 1  + (−0.381 − 0.924i)2-s + (−0.708 + 0.705i)4-s + (−0.442 − 0.767i)5-s + (1.68 + 0.975i)7-s + (0.922 + 0.385i)8-s + (−0.540 + 0.702i)10-s + (0.156 + 0.0903i)11-s + (−0.373 − 0.646i)13-s + (0.256 − 1.93i)14-s + (0.00375 − 0.999i)16-s + 0.982·17-s − 0.896i·19-s + (0.855 + 0.230i)20-s + (0.0237 − 0.179i)22-s + (−0.375 + 0.216i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 108 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0507 + 0.998i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 108 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (0.0507 + 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(108\)    =    \(2^{2} \cdot 3^{3}\)
\( \varepsilon \)  =  $0.0507 + 0.998i$
motivic weight  =  \(4\)
character  :  $\chi_{108} (19, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  \(0\)
Selberg data  =  \((2,\ 108,\ (\ :2),\ 0.0507 + 0.998i)\)
\(L(\frac{5}{2})\)  \(\approx\)  \(1.05622 - 1.00391i\)
\(L(\frac12)\)  \(\approx\)  \(1.05622 - 1.00391i\)
\(L(3)\)   not available
\(L(1)\)   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;3\}$,\(F_p(T)\) is a polynomial of degree 2. If $p \in \{2,\;3\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 + (1.52 + 3.69i)T \)
3 \( 1 \)
good5 \( 1 + (11.0 + 19.1i)T + (-312.5 + 541. i)T^{2} \)
7 \( 1 + (-82.7 - 47.7i)T + (1.20e3 + 2.07e3i)T^{2} \)
11 \( 1 + (-18.9 - 10.9i)T + (7.32e3 + 1.26e4i)T^{2} \)
13 \( 1 + (63.1 + 109. i)T + (-1.42e4 + 2.47e4i)T^{2} \)
17 \( 1 - 283.T + 8.35e4T^{2} \)
19 \( 1 + 323. iT - 1.30e5T^{2} \)
23 \( 1 + (198. - 114. i)T + (1.39e5 - 2.42e5i)T^{2} \)
29 \( 1 + (-604. + 1.04e3i)T + (-3.53e5 - 6.12e5i)T^{2} \)
31 \( 1 + (-718. + 414. i)T + (4.61e5 - 7.99e5i)T^{2} \)
37 \( 1 + 318.T + 1.87e6T^{2} \)
41 \( 1 + (-164. - 284. i)T + (-1.41e6 + 2.44e6i)T^{2} \)
43 \( 1 + (179. + 103. i)T + (1.70e6 + 2.96e6i)T^{2} \)
47 \( 1 + (-1.06e3 - 613. i)T + (2.43e6 + 4.22e6i)T^{2} \)
53 \( 1 - 2.83e3T + 7.89e6T^{2} \)
59 \( 1 + (1.27e3 - 737. i)T + (6.05e6 - 1.04e7i)T^{2} \)
61 \( 1 + (-936. + 1.62e3i)T + (-6.92e6 - 1.19e7i)T^{2} \)
67 \( 1 + (-214. + 123. i)T + (1.00e7 - 1.74e7i)T^{2} \)
71 \( 1 + 4.30e3iT - 2.54e7T^{2} \)
73 \( 1 - 3.01e3T + 2.83e7T^{2} \)
79 \( 1 + (-6.22e3 - 3.59e3i)T + (1.94e7 + 3.37e7i)T^{2} \)
83 \( 1 + (2.87e3 + 1.66e3i)T + (2.37e7 + 4.11e7i)T^{2} \)
89 \( 1 - 1.54e3T + 6.27e7T^{2} \)
97 \( 1 + (2.91e3 - 5.05e3i)T + (-4.42e7 - 7.66e7i)T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−12.10803939720426294015601896951, −11.98243401891635431871704855487, −10.78879251002771383890069915686, −9.466579871206048290054311885462, −8.338935670266085527750917130481, −7.87421605731782465823221712295, −5.30910110519753611425819738432, −4.40937940895774270491328657078, −2.45573995178454576165797049253, −0.936279802809565469013636185747, 1.30685014060042844147125778382, 4.00610613994750406048488209589, 5.19992144456855145251393801122, 6.86154436003316393649952184497, 7.64410503665616480274869910533, 8.506616290410510475079946613430, 10.14082528447413250229265162303, 10.87470675627600662155915725019, 12.03245521359372929354108744190, 13.91670819010600585308302433941

Graph of the $Z$-function along the critical line