# Properties

 Degree 2 Conductor $2^{2} \cdot 3^{3}$ Sign $0.875 - 0.483i$ Motivic weight 3 Primitive yes Self-dual no Analytic rank 0

# Related objects

## Dirichlet series

 L(s)  = 1 + (−2.66 + 0.947i)2-s + (5.14 − 0.697i)3-s + (6.20 − 5.04i)4-s + (−1.80 + 4.95i)5-s + (−13.0 + 6.73i)6-s + (14.7 + 2.60i)7-s + (−11.7 + 19.3i)8-s + (26.0 − 7.18i)9-s + (0.112 − 14.8i)10-s + (−10.3 + 3.77i)11-s + (28.4 − 30.3i)12-s + (13.1 − 11.0i)13-s + (−41.8 + 7.05i)14-s + (−5.82 + 26.7i)15-s + (13.0 − 62.6i)16-s + (48.2 − 27.8i)17-s + ⋯
 L(s)  = 1 + (−0.942 + 0.334i)2-s + (0.990 − 0.134i)3-s + (0.775 − 0.631i)4-s + (−0.161 + 0.442i)5-s + (−0.888 + 0.458i)6-s + (0.798 + 0.140i)7-s + (−0.519 + 0.854i)8-s + (0.963 − 0.265i)9-s + (0.00355 − 0.471i)10-s + (−0.284 + 0.103i)11-s + (0.683 − 0.729i)12-s + (0.280 − 0.235i)13-s + (−0.799 + 0.134i)14-s + (−0.100 + 0.460i)15-s + (0.203 − 0.979i)16-s + (0.688 − 0.397i)17-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 108 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.875 - 0.483i)\, \overline{\Lambda}(4-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 108 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.875 - 0.483i)\, \overline{\Lambda}(1-s) \end{aligned}

## Invariants

 $$d$$ = $$2$$ $$N$$ = $$108$$    =    $$2^{2} \cdot 3^{3}$$ $$\varepsilon$$ = $0.875 - 0.483i$ motivic weight = $$3$$ character : $\chi_{108} (11, \cdot )$ primitive : yes self-dual : no analytic rank = $$0$$ Selberg data = $$(2,\ 108,\ (\ :3/2),\ 0.875 - 0.483i)$$ $$L(2)$$ $$\approx$$ $$1.51522 + 0.391029i$$ $$L(\frac12)$$ $$\approx$$ $$1.51522 + 0.391029i$$ $$L(\frac{5}{2})$$ not available $$L(1)$$ not available

## Euler product

$L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1}$where, for $p \notin \{2,\;3\}$,$$F_p(T)$$ is a polynomial of degree 2. If $p \in \{2,\;3\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 $$1 + (2.66 - 0.947i)T$$
3 $$1 + (-5.14 + 0.697i)T$$
good5 $$1 + (1.80 - 4.95i)T + (-95.7 - 80.3i)T^{2}$$
7 $$1 + (-14.7 - 2.60i)T + (322. + 117. i)T^{2}$$
11 $$1 + (10.3 - 3.77i)T + (1.01e3 - 855. i)T^{2}$$
13 $$1 + (-13.1 + 11.0i)T + (381. - 2.16e3i)T^{2}$$
17 $$1 + (-48.2 + 27.8i)T + (2.45e3 - 4.25e3i)T^{2}$$
19 $$1 + (-43.9 - 25.3i)T + (3.42e3 + 5.94e3i)T^{2}$$
23 $$1 + (-33.4 - 189. i)T + (-1.14e4 + 4.16e3i)T^{2}$$
29 $$1 + (-19.0 + 22.7i)T + (-4.23e3 - 2.40e4i)T^{2}$$
31 $$1 + (-42.3 + 7.46i)T + (2.79e4 - 1.01e4i)T^{2}$$
37 $$1 + (161. + 278. i)T + (-2.53e4 + 4.38e4i)T^{2}$$
41 $$1 + (255. + 304. i)T + (-1.19e4 + 6.78e4i)T^{2}$$
43 $$1 + (24.4 + 67.1i)T + (-6.09e4 + 5.11e4i)T^{2}$$
47 $$1 + (59.0 - 334. i)T + (-9.75e4 - 3.55e4i)T^{2}$$
53 $$1 + 357. iT - 1.48e5T^{2}$$
59 $$1 + (136. + 49.7i)T + (1.57e5 + 1.32e5i)T^{2}$$
61 $$1 + (125. - 713. i)T + (-2.13e5 - 7.76e4i)T^{2}$$
67 $$1 + (193. + 230. i)T + (-5.22e4 + 2.96e5i)T^{2}$$
71 $$1 + (384. + 665. i)T + (-1.78e5 + 3.09e5i)T^{2}$$
73 $$1 + (-213. + 370. i)T + (-1.94e5 - 3.36e5i)T^{2}$$
79 $$1 + (506. - 604. i)T + (-8.56e4 - 4.85e5i)T^{2}$$
83 $$1 + (477. + 400. i)T + (9.92e4 + 5.63e5i)T^{2}$$
89 $$1 + (757. + 437. i)T + (3.52e5 + 6.10e5i)T^{2}$$
97 $$1 + (1.22e3 - 447. i)T + (6.99e5 - 5.86e5i)T^{2}$$
\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}