Properties

Degree 2
Conductor $ 2^{2} \cdot 3^{3} $
Sign $0.329 + 0.944i$
Motivic weight 3
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (1.65 − 2.29i)2-s + (−2.52 − 7.58i)4-s + (14.4 + 8.36i)5-s + (16.7 − 9.65i)7-s + (−21.5 − 6.74i)8-s + (43.1 − 19.4i)10-s + (2.44 + 4.22i)11-s + (6.03 − 10.4i)13-s + (5.50 − 54.3i)14-s + (−51.2 + 38.3i)16-s − 71.2i·17-s − 68.3i·19-s + (26.8 − 131. i)20-s + (13.7 + 1.39i)22-s + (−68.0 + 117. i)23-s + ⋯
L(s)  = 1  + (0.584 − 0.811i)2-s + (−0.316 − 0.948i)4-s + (1.29 + 0.748i)5-s + (0.902 − 0.521i)7-s + (−0.954 − 0.298i)8-s + (1.36 − 0.613i)10-s + (0.0669 + 0.115i)11-s + (0.128 − 0.223i)13-s + (0.105 − 1.03i)14-s + (−0.800 + 0.599i)16-s − 1.01i·17-s − 0.824i·19-s + (0.300 − 1.46i)20-s + (0.133 + 0.0134i)22-s + (−0.616 + 1.06i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 108 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.329 + 0.944i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 108 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.329 + 0.944i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(108\)    =    \(2^{2} \cdot 3^{3}\)
\( \varepsilon \)  =  $0.329 + 0.944i$
motivic weight  =  \(3\)
character  :  $\chi_{108} (71, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  \(0\)
Selberg data  =  \((2,\ 108,\ (\ :3/2),\ 0.329 + 0.944i)\)
\(L(2)\)  \(\approx\)  \(2.09248 - 1.48541i\)
\(L(\frac12)\)  \(\approx\)  \(2.09248 - 1.48541i\)
\(L(\frac{5}{2})\)   not available
\(L(1)\)   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;3\}$,\(F_p(T)\) is a polynomial of degree 2. If $p \in \{2,\;3\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 + (-1.65 + 2.29i)T \)
3 \( 1 \)
good5 \( 1 + (-14.4 - 8.36i)T + (62.5 + 108. i)T^{2} \)
7 \( 1 + (-16.7 + 9.65i)T + (171.5 - 297. i)T^{2} \)
11 \( 1 + (-2.44 - 4.22i)T + (-665.5 + 1.15e3i)T^{2} \)
13 \( 1 + (-6.03 + 10.4i)T + (-1.09e3 - 1.90e3i)T^{2} \)
17 \( 1 + 71.2iT - 4.91e3T^{2} \)
19 \( 1 + 68.3iT - 6.85e3T^{2} \)
23 \( 1 + (68.0 - 117. i)T + (-6.08e3 - 1.05e4i)T^{2} \)
29 \( 1 + (190. - 109. i)T + (1.21e4 - 2.11e4i)T^{2} \)
31 \( 1 + (-285. - 164. i)T + (1.48e4 + 2.57e4i)T^{2} \)
37 \( 1 + 133.T + 5.06e4T^{2} \)
41 \( 1 + (-29.5 - 17.0i)T + (3.44e4 + 5.96e4i)T^{2} \)
43 \( 1 + (-0.558 + 0.322i)T + (3.97e4 - 6.88e4i)T^{2} \)
47 \( 1 + (-93.4 - 161. i)T + (-5.19e4 + 8.99e4i)T^{2} \)
53 \( 1 - 266. iT - 1.48e5T^{2} \)
59 \( 1 + (104. - 180. i)T + (-1.02e5 - 1.77e5i)T^{2} \)
61 \( 1 + (-0.801 - 1.38i)T + (-1.13e5 + 1.96e5i)T^{2} \)
67 \( 1 + (371. + 214. i)T + (1.50e5 + 2.60e5i)T^{2} \)
71 \( 1 + 386.T + 3.57e5T^{2} \)
73 \( 1 + 776.T + 3.89e5T^{2} \)
79 \( 1 + (68.5 - 39.5i)T + (2.46e5 - 4.26e5i)T^{2} \)
83 \( 1 + (462. + 801. i)T + (-2.85e5 + 4.95e5i)T^{2} \)
89 \( 1 + 1.04e3iT - 7.04e5T^{2} \)
97 \( 1 + (-733. - 1.26e3i)T + (-4.56e5 + 7.90e5i)T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−13.31270329846724123740586114987, −11.83324056882861879361122349956, −10.90396564219944656896818867439, −10.11425888748265893456093818164, −9.113415310361501177399156812022, −7.20122948075689904500107017923, −5.87121045026197776446523621493, −4.74237136405887984743584311140, −2.94980888882604143705610991358, −1.54500569622278170409350453987, 2.02513945855890556117314590143, 4.30217838255529456753896898384, 5.53807416635109625204925604477, 6.23954353692943908722309001432, 8.057420289021462772404486060241, 8.787435687015890693111658714471, 10.03027245806259743439036606554, 11.69117768551679833180064623441, 12.67134894202939766940748009671, 13.55650622333028290784258423109

Graph of the $Z$-function along the critical line