Properties

Degree 2
Conductor $ 2^{2} \cdot 3^{3} $
Sign $0.638 + 0.769i$
Motivic weight 3
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (2.52 − 1.27i)2-s + (4.74 − 6.44i)4-s + (1.23 − 0.715i)5-s + (23.8 + 13.7i)7-s + (3.76 − 22.3i)8-s + (2.21 − 3.38i)10-s + (11.1 − 19.2i)11-s + (−34.5 − 59.9i)13-s + (77.8 + 4.33i)14-s + (−18.9 − 61.1i)16-s + 31.4i·17-s + 11.4i·19-s + (1.27 − 11.3i)20-s + (3.49 − 62.7i)22-s + (72.6 + 125. i)23-s + ⋯
L(s)  = 1  + (0.892 − 0.451i)2-s + (0.593 − 0.805i)4-s + (0.110 − 0.0639i)5-s + (1.28 + 0.744i)7-s + (0.166 − 0.986i)8-s + (0.0700 − 0.107i)10-s + (0.304 − 0.527i)11-s + (−0.738 − 1.27i)13-s + (1.48 + 0.0828i)14-s + (−0.296 − 0.955i)16-s + 0.448i·17-s + 0.138i·19-s + (0.0142 − 0.127i)20-s + (0.0338 − 0.608i)22-s + (0.658 + 1.14i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 108 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.638 + 0.769i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 108 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.638 + 0.769i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(108\)    =    \(2^{2} \cdot 3^{3}\)
\( \varepsilon \)  =  $0.638 + 0.769i$
motivic weight  =  \(3\)
character  :  $\chi_{108} (35, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  \(0\)
Selberg data  =  \((2,\ 108,\ (\ :3/2),\ 0.638 + 0.769i)\)
\(L(2)\)  \(\approx\)  \(2.60854 - 1.22467i\)
\(L(\frac12)\)  \(\approx\)  \(2.60854 - 1.22467i\)
\(L(\frac{5}{2})\)   not available
\(L(1)\)   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;3\}$,\(F_p(T)\) is a polynomial of degree 2. If $p \in \{2,\;3\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 + (-2.52 + 1.27i)T \)
3 \( 1 \)
good5 \( 1 + (-1.23 + 0.715i)T + (62.5 - 108. i)T^{2} \)
7 \( 1 + (-23.8 - 13.7i)T + (171.5 + 297. i)T^{2} \)
11 \( 1 + (-11.1 + 19.2i)T + (-665.5 - 1.15e3i)T^{2} \)
13 \( 1 + (34.5 + 59.9i)T + (-1.09e3 + 1.90e3i)T^{2} \)
17 \( 1 - 31.4iT - 4.91e3T^{2} \)
19 \( 1 - 11.4iT - 6.85e3T^{2} \)
23 \( 1 + (-72.6 - 125. i)T + (-6.08e3 + 1.05e4i)T^{2} \)
29 \( 1 + (-93.6 - 54.0i)T + (1.21e4 + 2.11e4i)T^{2} \)
31 \( 1 + (102. - 59.3i)T + (1.48e4 - 2.57e4i)T^{2} \)
37 \( 1 + 300.T + 5.06e4T^{2} \)
41 \( 1 + (344. - 199. i)T + (3.44e4 - 5.96e4i)T^{2} \)
43 \( 1 + (-173. - 100. i)T + (3.97e4 + 6.88e4i)T^{2} \)
47 \( 1 + (-151. + 262. i)T + (-5.19e4 - 8.99e4i)T^{2} \)
53 \( 1 - 243. iT - 1.48e5T^{2} \)
59 \( 1 + (-41.9 - 72.6i)T + (-1.02e5 + 1.77e5i)T^{2} \)
61 \( 1 + (-199. + 345. i)T + (-1.13e5 - 1.96e5i)T^{2} \)
67 \( 1 + (307. - 177. i)T + (1.50e5 - 2.60e5i)T^{2} \)
71 \( 1 + 866.T + 3.57e5T^{2} \)
73 \( 1 - 64.6T + 3.89e5T^{2} \)
79 \( 1 + (-354. - 204. i)T + (2.46e5 + 4.26e5i)T^{2} \)
83 \( 1 + (79.8 - 138. i)T + (-2.85e5 - 4.95e5i)T^{2} \)
89 \( 1 + 1.49e3iT - 7.04e5T^{2} \)
97 \( 1 + (-700. + 1.21e3i)T + (-4.56e5 - 7.90e5i)T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−13.02408311634510141482059693218, −12.02425367882389251981515468532, −11.23931223956756275942963534271, −10.20513838299551435967766233650, −8.759252079663090049810770664206, −7.42847945965517475152770584310, −5.70070825214509117612122822751, −5.01000040294171697490456772419, −3.25120912389551870065749814006, −1.61137019726309867837660849835, 2.10342002309472312389137088771, 4.20950875223986617677649069203, 4.96447188116703260884229485925, 6.70360171715825005218570120734, 7.50168204590657573961726297990, 8.787156184611059171658155928063, 10.44716481694230994269743138907, 11.57515393479514742326277621708, 12.28983589307285525655668382710, 13.75743513165763028542874910927

Graph of the $Z$-function along the critical line