Properties

Label 2-108-27.14-c2-0-3
Degree $2$
Conductor $108$
Sign $0.942 + 0.334i$
Analytic cond. $2.94278$
Root an. cond. $1.71545$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (2.88 − 0.812i)3-s + (0.980 − 1.16i)5-s + (3.23 + 1.17i)7-s + (7.67 − 4.69i)9-s + (−3.21 − 3.82i)11-s + (−0.778 + 4.41i)13-s + (1.88 − 4.17i)15-s + (−3.57 − 2.06i)17-s + (6.75 + 11.7i)19-s + (10.3 + 0.772i)21-s + (−5.79 − 15.9i)23-s + (3.93 + 22.3i)25-s + (18.3 − 19.7i)27-s + (−47.1 + 8.30i)29-s + (−14.3 + 5.22i)31-s + ⋯
L(s)  = 1  + (0.962 − 0.270i)3-s + (0.196 − 0.233i)5-s + (0.462 + 0.168i)7-s + (0.853 − 0.521i)9-s + (−0.291 − 0.347i)11-s + (−0.0599 + 0.339i)13-s + (0.125 − 0.278i)15-s + (−0.210 − 0.121i)17-s + (0.355 + 0.615i)19-s + (0.491 + 0.0367i)21-s + (−0.252 − 0.692i)23-s + (0.157 + 0.893i)25-s + (0.680 − 0.733i)27-s + (−1.62 + 0.286i)29-s + (−0.462 + 0.168i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 108 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.942 + 0.334i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 108 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.942 + 0.334i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(108\)    =    \(2^{2} \cdot 3^{3}\)
Sign: $0.942 + 0.334i$
Analytic conductor: \(2.94278\)
Root analytic conductor: \(1.71545\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{108} (41, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 108,\ (\ :1),\ 0.942 + 0.334i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.84449 - 0.317250i\)
\(L(\frac12)\) \(\approx\) \(1.84449 - 0.317250i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (-2.88 + 0.812i)T \)
good5 \( 1 + (-0.980 + 1.16i)T + (-4.34 - 24.6i)T^{2} \)
7 \( 1 + (-3.23 - 1.17i)T + (37.5 + 31.4i)T^{2} \)
11 \( 1 + (3.21 + 3.82i)T + (-21.0 + 119. i)T^{2} \)
13 \( 1 + (0.778 - 4.41i)T + (-158. - 57.8i)T^{2} \)
17 \( 1 + (3.57 + 2.06i)T + (144.5 + 250. i)T^{2} \)
19 \( 1 + (-6.75 - 11.7i)T + (-180.5 + 312. i)T^{2} \)
23 \( 1 + (5.79 + 15.9i)T + (-405. + 340. i)T^{2} \)
29 \( 1 + (47.1 - 8.30i)T + (790. - 287. i)T^{2} \)
31 \( 1 + (14.3 - 5.22i)T + (736. - 617. i)T^{2} \)
37 \( 1 + (32.3 - 56.0i)T + (-684.5 - 1.18e3i)T^{2} \)
41 \( 1 + (55.4 + 9.76i)T + (1.57e3 + 574. i)T^{2} \)
43 \( 1 + (-22.7 + 19.0i)T + (321. - 1.82e3i)T^{2} \)
47 \( 1 + (7.04 - 19.3i)T + (-1.69e3 - 1.41e3i)T^{2} \)
53 \( 1 - 19.8iT - 2.80e3T^{2} \)
59 \( 1 + (-63.6 + 75.9i)T + (-604. - 3.42e3i)T^{2} \)
61 \( 1 + (-77.5 - 28.2i)T + (2.85e3 + 2.39e3i)T^{2} \)
67 \( 1 + (-11.2 + 63.7i)T + (-4.21e3 - 1.53e3i)T^{2} \)
71 \( 1 + (-109. - 63.3i)T + (2.52e3 + 4.36e3i)T^{2} \)
73 \( 1 + (-18.0 - 31.2i)T + (-2.66e3 + 4.61e3i)T^{2} \)
79 \( 1 + (14.4 + 82.1i)T + (-5.86e3 + 2.13e3i)T^{2} \)
83 \( 1 + (16.5 - 2.91i)T + (6.47e3 - 2.35e3i)T^{2} \)
89 \( 1 + (-66.0 + 38.1i)T + (3.96e3 - 6.85e3i)T^{2} \)
97 \( 1 + (-82.1 + 68.9i)T + (1.63e3 - 9.26e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.48196893112784938829081487272, −12.58507263798865248296985372965, −11.38549854991031435064195609625, −10.01265812654839720307539157072, −8.940453468885260607868061260806, −8.066699056910992685855513005810, −6.87042163097813747884371921444, −5.21326135508421548416794106201, −3.55219831524948682524962395281, −1.84102769588108979564286071308, 2.17777231796777701186422145520, 3.78685313200206169813840859474, 5.24755113741049135973818483433, 7.09909253637948803491141467294, 8.054359842723758777633652211078, 9.236474177103108031915304470255, 10.20663007001672647677499985586, 11.25808143416264390947548778710, 12.75088610665459052692092916520, 13.63361960857972212927145520074

Graph of the $Z$-function along the critical line